西北工业大学机械原理课后答案第9章 下载本文

内容发布更新时间 : 2024/12/26 17:40:58星期一 下面是文章的全部内容请认真阅读。

9—10设计一凸轮机构,凸轮转动一周时间为2 s。凸轮的推程运动角为60o,回程运动角为150。,近休止运动角为150o。推杆的行程为15 mm。试选择合适的推杆升程和回程的运动规律,使得其最大速度值最小,并画出运动线图。

9一11试设计一对心直动滚子推杆盘形凸轮机构,滚子半径r,=10 mm,凸轮以等角速度逆时针回转。凸轮转角δ=0o~120o时,推杆等速上升20 mm;δ=120o~180o时,推杆远休止;δ=180o~270o时,推杆等加速等减速下降20 mm;δ=270o~:360o时,推杆近休止。要求推程的最大压力角α。。≤30o,试选取合适的基圆半径,并绘制凸轮的廓线。问此凸轮机构是否有缺陷,应如何补救。

9一12试设计一个对心平底直动推杆盘形凸轮机构凸轮的轮廓曲线。设已知凸轮基圆半径rn=30 mm,推杆平底与导轨的中心线垂直,凸轮顺时针方向等速转动。当凸轮转过120~1~r推杆以余弦加速度运动上升20。。,再转过150o时,推杆又以余弦加速度运动回到原位,凸轮转过其余90o时,推杆静止不动。问这种凸轮机构压力角的变化规律如何?是否也存在自锁问题?若有,应如何避免?

解 推杆在推程及回程运动规律的位移方程为 (1)推程

S=h[1-cos(πδ/δ0)]/2: 0o≤δ≤120o (2)回程.

S=h[1+cos(πδ/δ0`)]/2 0o≤δ≤1 50o 计算各分点的位移值如表9-4l:

根据表9-4可作所求图如下图:

这种凸轮机构的压力角为一定值,它恒等于平底与导路所夹锐角的余角.与其他因素无关。这种凸轮机构也会是存在自锁问题,为了避免自锁.在设计时应该在结构许可的条件下,尽可能取较大的推杆导路导轨的长度。并尽可能减小推gan 9的悬臂尺寸。

9一13 一摆动滚子推杆盘形凸轮机构(参看图9—23),已知lOA=60 mmr0=25 mm,lAB=50 mm,rr=8 mm。凸轮顺时针方向等速转动,要求当凸轮转过180o时,推杆以余弦加速度运动向上摆动25o;转过一周中的其余角度时,推杆以正弦加速度运动摆回到原位置。试以作图法设计凸轮的工作廓线。

解 推扦在推程及回程段运动规律的位移方程为 (1)推程:s=Φ[1-cos(πδ/δ0)/2 0o≤δ≤180o

(2)回程:s=Φ[1-(δ/δ`0)十sin(2πδ/δ`0)]/(2π) oo≤δ≤180o 计算各分点的位移值如表9.5:

根据表9。5作图如图所示

9—14试设计偏置直动滚子推杆盘形凸轮机构凸轮的理论轮廓曲线和工作廓线。已知凸轮轴置于推杆轴线右侧,偏距e=20 mm,基圆半径r。=50 mm,滚子半径r,=10 mm。凸轮以等角速度沿顺时针方向回转,在凸轮转过角占,:120。的过程中,推杆按正弦加速度运动规律上升矗=50 mm;凸轮继续转过炙=30。时,推杆保持不动;其后,凸轮再回转角度如=60时,推杆又按余弦加速度运动规律下降至起始位置;凸轮转过一周的其余角度时,推杆又静止不动。

解 (1)汁算推杆的位移并对凸轮转角求导:

当凸轮转角δ在o≤δ≤2π/3过程中,推杆按正弦加速度运动规律上升h=50 rnm。则

?12??s?h[?sin()]?2??00

?12??33?sin()]?50[?cos(3?)]?02??02?2?可得 0≤δ≤2π/3 ds11??233?h[?cos(?)]50?[?cos(3)]?1?1?12?2? d? 0≤δ≤2π/3

当凸轮转角占在2π/3≤δ≤5π/6过程中,推杆远休。 S=50 , 2π/3≤δ≤5π/6 ds/dδ=0, 2π/3≤δ≤5π/6

当凸轮转角δ在5π/6≤δ≤7π/6过程中,推杆又按余弦加速度运动规律下

降至起始位置。则

h??s?[1?cos`(0]2?0

可得

?(???1??2)h505?s?{1?cos[]}?{1?cos[3(??)]}2?326 5π/6≤δ≤7π

s?h[/6

?(???1??2)dsh?55???sin[]???3sin[3(??)]d?2?3?326 5π/6≤δ≤7π/6

当凸轮转角δ在7π/6≤δ≤2π过程中,推杆近休。 S=0 7π/6≤δ≤2π ds/ dδ=0 7π≤δ≤2π

(2)计算凸轮的理论廓线和实际廓线: i 本题的计算简图如图(a)所示。选取坐标系如图 (b)所示,由图(b)可知,凸轮理论廓线上B点(即滚子中心)的直角坐标为 :

x=(s0+s)cosδ-esinδ y=(s0+s)sinδ+ecosδ

式中:s0=(r02-e2)1/2=(502-202)1/2=45.826mm

由图 (b)可知凸轮实际廓线的方程即B’点的坐标方程式为 i x`=x-rrcosθ Y`=y-rrsinθ

因为 dy/dδ=(ds/dδ-e)sinδ+(s0+s)cosδ dx/dδ=(ds/dδ-e)cosδ-(s0-s)sinδ

dx/dssin???(dx/d?)2?(dy/d?)222(dx/d?)?(dy/d?)所以

故 x`=x-10cosθ y`=y-10sinθ

cos??dy/ds

由上述公式可得理论轮廓曲线和工作廓线的直角坐标.计算结果如表9.6

凸轮廓线如下图昕示。

9—15图示为一旅行用轻便剃须刀,图a为工作位置,图b为正在收起的位置(整个刀夹可以收入外壳中)。在刀夹上有两个推杆A、B,各有一个销A’、B’,分别插入外壳里面的两个内凸轮槽中。按图a所示箭头方向旋转旋钮套时(在旋钮套中部有两个长槽,推杆上的销从中穿过,使两推杆只能在旋钮套中移动,而不能相对于旋钮套转动),刀夹一方面跟着旋钮套旋转,并同时从外壳中逐渐伸出,再旋转至水平位置(工作位置)。按图b所示箭头方向旋转旋钮套时,刀夹也