四川省资阳市2013届高三第二次诊断性考试 理 下载本文

内容发布更新时间 : 2024/5/27 8:03:28星期一 下面是文章的全部内容请认真阅读。

20.(本小题满分13分)若抛物线C的顶点在坐标原点O,其图象关于x轴对称,且经过点M(1,2).

(Ⅰ)若一个等边三角形的一个顶点位于坐标原点,另外两个顶点在该抛物线上,求该等边三角形的边长;

(Ⅱ)过点M作抛物线C的两条弦MA,MB,设MA,MB所在直线的斜率分别为k1,k2, 当k1,k2变化且满足k1?k2??1时,证明直线AB恒过定点,并求出该定点坐标.

121.(本小题满分14分)已知函数f1(x)?x2,f2(x)?alnx(其中a?0).

2(Ⅰ)求函数f(x)?f1(x)?f2(x)的极值;

1(Ⅱ)若函数g(x)?f1(x)?f2(x)?(a?1)x在区间(,e)内有两个零点,求正实数a的取值

e范围;

31(Ⅲ)求证:当x?0时,lnx?2?x?0.(说明:e是自然对数的底数,e=2.71828…)

4xe

资阳市2012—2013学年度高中三年级第二次高考模拟考试

数学(理工农医类)参考答案及评分意见

一、选择题:本大题共10个小题,每小题5分,共50分.

1-5. CABCB;6-10.DADCC.

二、填空题:本大题共5个小题,每小题5分,共25分.

11.3; 12.?316?; 13.12?;14.3?1;15.①②④. 33三、解答题:本大题共6个小题,共75分.解答要写出文字说明,证明过程或演算步骤.

16.解析 (Ⅰ)由3a?2csinA?0及正弦定理, 得3sinA?2sinCsinA?0(sinA?0), ∴sinC?∴C?3,∵△ABC是锐角三角形, 2?3. ···················································································································· 6分

(Ⅱ)∵c?2,C??3,由余弦定理,a2?b2?2abcos?3?4,即a2?b2?ab?4.

······································································································································ 8分 ∴(a?b)2?4?3ab?4?3?(a?b2),即(a?b)2?16, 2∴a?b?4,当且仅当a?b?2取“=”,故a?b的最大值是4. ······························· 12分 17.解析 (Ⅰ)记“A、B两小区已经收到邀请的人选择“幸福愿景”座谈会的人数相等”为

3135113事件A,则P(A)?(1?)?C30()3??C3. ······················································ 4分 ()?424216(Ⅱ)随机变量?的可能值为0,1,2,3,4.

311; P(??0)?(1?)?(1?)3?42323136113; P(??1)??(1?)3?(1?)?C3()?42423233112113; P(??2)??C3()?(1?)?C32()3?424232313110; P(??3)??C32()3?(1?)?()3?424232313.(每对一个给1分) ··························································· 9分 P(??4)??()3?4232?的分布列如下:

? 0 1 2 3 4 1612103 P 3232323232 ······································································································································ 10分

16121039∴?的数学期望E??0??1??2??3??4?··························· 12分 ?. ·

32323232324

18.(Ⅰ)证明:取AB的中点M,?AF?AB,

4?F为AM的中点,又?E为AA1的中点,∴EF//A1M, 在三棱柱ABC?A1B1C1中,D,M分别为A1B1,AB的中点, ?A1D//BM,且A1D?BM,

1则四边形A1DBM为平行四边形,?A1M//BD, ?EF//BD,又?BD?平面BC1D,EF?平面BC1D,

··································································································· 6分 ?EF//平面BC1D. ·

??????????????(Ⅱ)连接DM,分别以MB、MC、MD所在直线为x轴、y轴、z轴,建立如图空间直角坐标系,则B(1,0,0),E(?1,0,1),D(0,0,2),C1(0,3,2), ?????????????∴BD?(?1,0,2),BE?(?2,0,1),BC1?(?1,3,2). 设面BC1D的一个法向量为m?(x1,y1,z1),面BC1E的一个法向量为n?(x2,y2,z2), A1????????x1?2z1?0,?m?BD?0,则由?????得?取m?(2,0,1), ??x?3y?2z?0,m?BC?0,???111?1????E?2x?z?0,??n?BE?0,22??又由?????得?取n?(1,?3,2), ????x2?3y2?2z2?0,?n?BC1?0,?C1B1DCm?n410??则cos?m,n??,

|m||n|55?8故二面角E-BC1-D的余弦值为AFMB10. ··································································· 12分 519.解析 (Ⅰ)由2an?1?3Sn?3n?4,得2an?3Sn?1?3n?1(n?2), 两式相减得2an?1?2an?3(Sn?Sn?1)?3,即2an?1?an?3, ····································· 2分

13∴an?1??an?,

221则an?1?1??(an?1)(n?2), ················································································ 4分

237由a1?t,又2a2?3S1?7,则a2??t?,

2237?t??1a?112?2??,∴t?2. 又∵数列{an?1}是等比数列,∴只需要2a1?1t?121此时,数列{an?1}是以a1?1?1为首项,?为公比的等比数列. ························· 6分

2111(Ⅱ)由(Ⅰ)得,an?1?(a1?1)?(?)n?1?(?)n?1,∴an?(?)n?1?1,·············· 8分

22211bn??[(?)n?1?1]???n2??(?)n?1?n2,

2211由题意得b2n?1?b2n,则有?(?)2n?2?(2n?1)2??(?)2n?1?(2n)2,

2211即?(?)2n?2[1?(?)]?(2n?1)2?(2n)2,

22(4n?1)?4n∴???, ···································································································· 10分

6

(4n?1)?4n(4n?1)?4n(4?1)?4*而?对于n?N时单调递减,则?的最大值为???2,

666故???2. ··················································································································· 12分 20.解析 (Ⅰ)根据题意,设抛物线C的方程为y2?ax(a?0),点M(1,2)的坐标代入该方程,得a?4,故抛物线C的方程为y2?4x. 2分

设这个等边三角形OEF的顶点E,F在抛物线上,且坐标为(xE,yE),(xF,yF).

22则yE?4xE,yF?4xF,又|OE|?|OF|, 222222∴xE,即xE?yE?xF?yF?xF?4xE?4xF?0, ∴(xE?xF)(xE?xF?4)?0,因xE?0,xF?0, ∴xE?xF,即线段EF关于x轴对称.

则?EOx?30?,所以

yE3?tan30??, xE32即xE?3yE,代入yE?4xE得yE?43,

故等边三角形的边长为83. ····················································································· 6分 (Ⅱ)设A(x1,y1)、B(x2,y2),则直线MA方程y?k1(x?1)?2,MB方程y?k2(x?1)?2,

??y?k1(x?1)?2,联立直线MA方程与抛物线方程,得?2消去x,

y?4x,??得k1y2?4y?8?4k1?0,

4∴y1??2, ①

k14同理y2??2, ②

k2y2?y1y12y2?y1(x?), 而AB直线方程为y?y1?(x?x1),消去x1,x2,得y?y1?22y2y14x2?x1?44yy4x?12 ③化简得即y? y1?y2y1?y2k?k2(k1?k2)?446?4,y1y2?4[??1]?4(?1), 由①、②,得y1+y2=4?12?4?k1k2k1k2k1k2k1k2k1k2代入③,整理得k1k2(x?y?1)?6?y?0. ?x?y?1?0,?x?5,由?得?故直线AB经过定点(5,-6). ········································ 13分

y?6?0,y??6.??121.解析 (Ⅰ)f(x)?f1(x)?f2(x)?ax2?lnx,

211∴f?(x)?axlnx?ax?ax(2lnx?1)(x?0,a?0),

22由f?(x)?0,得x?e?12?12,由f?(x)?0,得0?x?e,

?12?12故函数f(x)在(0,e)上单调递减,在(e,??)上单调递增, 所以函数f(x)的极小值为f(e)??(Ⅱ)函数g(x)??12a,无极大值. ·············································· 4分 4e12x?alnx?(a?1)x, 2ax2?(a?1)x?a(x?a)(x?1)则g?(x)?x??(a?1)?, ?xxx

令g?(x)?0,∵a?0,解得x?1,或x??a(舍去), 当0?x?1时,g?(x)?0,g(x)在(0,1)上单调递减; 当x?1时,g?(x)?0,g(x)在(1,??)上单调递增.

1函数g(x)在区间(,e)内有两个零点,

ea?12e?1??1??a?0,a?,?12??2e2g()?0,e2e?2e?e???1?1?只需?g(1)?0,即??a?1?0,∴?a?,

2?g(e)?0,?2?2??e?2e?e2,???(a?1)e?a?0,?a?2e?2?2?2e?11故实数a的取值范围是(2······································································ 9分 ,). ·

2e?2e2x2312(Ⅲ)问题等价于xlnx?x?.由(Ⅰ)知f(x)?x2lnx的最小值为?.

e42ex23x(x?2)设h(x)?x?,h?(x)??得h(x)在(0,2)上单调递增,在(2,??)上单调递减.

e4ex43∴h(x)max?h(2)?2?,

e43e2?2e?16(3e?8)(e?2)143314??0, ∵??(2?)???2=?224e4e2ee442ee2x331∴f(x)min?h(x)max,∴x2lnx?x?,故当x?0时,lnx?2?x?0. ··········· 14分

e44xe