内容发布更新时间 : 2024/12/23 10:52:38星期一 下面是文章的全部内容请认真阅读。
定理4 如果A为严格对角优势矩阵或为不可约弱对角优势矩阵,则对任意x,雅可比迭代法(4)与高斯—塞德尔迭代法(8)均为收敛的.
证明 下面我们以A为不可约弱对角优势矩阵为例,证明雅可比迭代法收敛,其他证明留给读者.
要证明雅可比迭代法收敛,只要证用反证法,设矩阵
?0???B1??1,B1是迭代矩阵.
B1有某个特征值?,使得??1,则det??I?B1??0,由于A不可约,
?1且具有弱对角优势,所以D存在,且 从而
?I?B1??I??I?D?1A??D?1??D?A?D?
??D?A?D??0
另一方面,矩阵??D?A?D?与矩阵A的非零元素的位置是完全相同的,所以??D?A?D?也是不可约的,又由于??1,且A弱对角优势,所以
det?aii?aii??aij,j?ij?ini?1,2,...n并且至少有一个i使不等号严格成立.因此,矩阵
??D?A?D?弱对角优势,故
??D?A?D?为不可约弱对角优势矩阵.从而
det??D?A?D??0
矛盾,故
B1的特征值不能大于等于1,定理得证.