内容发布更新时间 : 2024/12/26 6:29:05星期一 下面是文章的全部内容请认真阅读。
精选文库
答:教材是课程实施的一种文本性资源,是师生对话的“话题”,是一个引子,或者是一个案例,而不是课程的全部。可见,教材是可以超越、可以选择、可以变更的。教师的任务是用教材教学生,而不是教学生学教材。在对教材的处理方法上,教师要善于结合本地区的实际情况,特别是联系学生的生活实际和学习实际对教材内容进行修正开发和创造。
但是,这绝不意味着教师可以随心所欲地对待教材。应当看到,教材凝结了众多编者对教育的认识、对数学的理解,它是根据课程标准写的,体现了基本的教学要求,是教师的教和学生的学的主要依据,是最基本、最重要的课程资源。因此,开发课程资源绝不能忽视教材,而深入地钻研教材、理解和尊重教材的编写意图是使用好教材的前提。只有在真正弄懂弄通教材的编写意图,对教学目标把握非常明确的基础上,才谈得上“创造性”地处理与整合教材。教材是重要的课程资源,学生的生活经验、教师的教学经验也是课程资源,学生间的学习差异、师生间的交流启发,学生在课堂出现的错误也都是有效的课程资源。教师要善于利用并开发各种教材之外的文本性课程资源与非文本性课程资源,为课程价值的实现和学习中的生成提供良好的平台。
★2、新课改要不要教学模式?为什么?
从本质上来讲,教学模式应看做是实施教学的一整套方法论体系。而作为一整套“方法论体系”,在教学模式的构成要素中,就应当包含着理念基础、教学目标和原则、教学程序、教学策略、教学方法和技能、教学手段和教学评价等若干内容。这些要素相互联系、相互制约,从而才构成为一定的教学模式。它既是相对稳定的,但同时又呈现着动态开放的特征。 与新课程的要求相适应的数学教学模式,需要体现以下几个基本特征: 一是学习主体的主动参与和有效互动。 二是学习主体的情感体验与活动构建。 三是学习主体的合作探究与个性发展。 四是加强学习者与生活世界的联系和激励他们大胆创新。 变革中的几种新的教学模式(一)以自主活动为特征的新型课堂教学模式 (二)以问题探究为基本特征的教学模式
3、新课程为什么要提倡合作学习? 1、有利于增进学生之间的合作精神 2、有利于激发学生的学习动机 3、有利于建立和谐平等的师生关系
— 21
精选文库
4、有利于形成良好的评价意识 5、有利于课程目标的实现
4、什么样的“问题”才是好问题?(《案例+评析+设计与再设计》P81) 答:(1)应当是明确、具体和可感。学生可以不必为琢磨问题的内涵而费尽周折,可以直接关注问题所导向的学习领域或学习空间。只有这样的问题,才有利于学生思维的直接切入。(2)应当具有思考价值,即问题要有一定的思维深度和广度,需要学生历经真实的思考,运用多种思维方式的组合进行苦苦思索、探究后,才能寻求到问题的结果;要适合学生的思维水平,应当让绝大多数同学经过思考后都能解决问题,并且让那些学习基础和能力暂时较差的学生在教师的引导或同学的帮助下也能够不同层次地解决问题。(3)要关注“三维”目标的全面达成。(4)问题要具有情境功能,等等。
5、你认为写教学反思时可从哪几个方面入手?(P51~54) 答:我认为写教学反思时可从以下两个方面入手:
— 22
精选文库
《小学数学教学设计与案例分析》试题及答案
(1)教学定位问题。教学定位是否恰当,包括教学起点是否把握准,目标定位是正确、恰当,教材合理的设计意图是否得以体现;(2)动态生成问题。新课程把教学看作是师生积极互动的过程,教学中师生之间、生生之间交往多了,对话也就多了,一系列教师意想不到的情况出现自然也多了。面对这些生成的资源,教师需要从教学要求出发加以把握和利用,从而改变教学的预期行为,重新建构教学过程;(3)教学设计问题。教学设计是否科学,包括:①教学意图是否体现。实际教学过程和效果有时与教学设计的意图相一致,但难免产生两者不相统一的情况,教学反思中捕捉这类事件,无疑有助于完善日后的教学,积累教师自己的教学智慧。②教学资源是否还需优化。即有没有更理想的教学资源代替设计中的教学资源。③教学的方式、方法是否还需优化;(4)教学效果是否良好。教学总是有一定的目标指向的,总是要达到一定的知识、情感等方面的要求的。那么,教学是不是达到了预期的教学效果?学生的行为是不是产生了预期的变化?等等,这些都是教师在反思时需着重考虑的问题。
另外,要写好一份教学反思,还需注意:①把新课程理念作为反思的着眼点;② 把相关经验和理论作为反思的重要参照。
6、你认为问题设计要注意哪些问题?(《案例+评析+设计与再设计》P88) 答:(1)要为学生的问题意识和质疑能力的发展创设良好的环境。第一,要创设一种宽松、愉悦的民主学习空间。只有在这样的学习空间中,学生的心态才能得以放松,思维才能得以自由的施展,个性化的观点才有了生长的基础,问题的产生才有可能。第二,要致力于挑战性、竞争性学习环境的营造,让学生产生思维的碰撞,从而引发学生的问题意识。第三,要设置一定思维障碍打破学生的思维定势,促使学生产生问题和提出问题。第四,要营造一种对话、交流、质疑的课堂环境,让学生的对话、研讨成为可能。第五,在教学过程中渗透对学生提问技巧的培养。
(2)向学生提供成功体验,正确对待学生的每一个问题。学生提出的问题在横向比较中的确有好坏优劣之分,然而对于学生自身来说,每一个问题都不得是其思考的结果,都不得是他对自身的一种超越。学生的问题要么是他们百思不得其解的困惑,要么是他们孜孜以求后的收获,要么是他们灵光闪现的惊喜发现。教师必须能够透视这些问题,才能真正发现学生提出这些问题的过程,才能理解这些问题对于学生学习的重要性。因此必须善待学生的每一次提问,正确分析学生
— 23
精选文库
的每一个问题。 五、案例分析。
1、[案例描述]《带分数乘法》教学片断:
⒈学生根据应用题“草坪长5米,宽2米,求草坪的面积。”列出算式:5×2 ⒉算式一出现,教师就立即组织四人小组交流算法。
其中一个组,在小组交流时,由于三位同学还没有想出方法,整个合作过程只好由一位同学讲了三种方法:①(5+)×(2+) ②5.8×2.5 ③×,其他同学拍手叫好而告终。
请你根据上述教学片断进行反思(主要从合作交流与独立思考的层面分析)。 答:以上现象是教师在使用小组合作时经常出现的一种问题。就是没有处理好小组合作和独立思考的关系。教师要处理好合作学习与独立思考的关系强调合作学习不是不要独立思考。独立思考应是合作学习的前提基础,合作学习应是独立思考的补充和发挥。多数学习能通过独立思考解决的问题,就没必要组织合作学习。而合作学习的深度和广度应远远超过独立学习的结果。当然,宜独宜合,应和教学情景、学生实际结合,择善而用,才能日臻完美。我们在设计学生合作学习时,能否认真的思考以下三个问题:学生在合作交流前,你让学生经历过独立思考吗?学生在合作交流时,他们有充分的时空吗?学生在合作交流时,有否进行明确的角色分工呢?
2、[案例描述]记得那是一节顺利而精彩的课,上课内容是“分数的意义”。在课的结尾,教者没有安排学生围绕知识点去小结,而是让学生在小组内、班里用分数表述一下自己这节课的学习情绪。令人难忘的是有一位学生在小组里的表述:“我把整节课的学习情绪看成单位‘1’,高兴的占了3份,即3/4高兴,遗憾的占了一份,即1/4遗憾。因为面对这么多的老师听课,我们班的同学一个个都正确地回答了老师的提问,展示了我们班的风采,为班级争了光,我为我们班而自豪,感到十分高兴。我之所以遗憾,是因为整堂课我一直认真思考,积极举手,许多问题又不难,但老师没有给我一次机会,我感到很遗憾……” 下课后我找到这位同学了解情况:
问:小朋友,你知道老师为什么没让你发言吗?
答:老师有可能没有看到我举手,也有可能怕我回答不准确吧,因为数学这门课我学得不太好。
— 24
精选文库
问:平时课堂上,老师都叫哪些同学发言呢? 答:差不多都是成绩较好的同学。
[案例反思](可以从面向全体的角度分析):
答:这是我们数学课堂中存在的普遍想象,我们的数学课堂教学如何来面向全体学生呢?只有最大限度地尊重个体,才有可能真正面向全体,这样的道理已经很难在传统的教学组织形式下得以落实。我们想,我们可以采用开展小组合作交流,让学生的个人想法在小组内得到展示,在小组内得到表现。……
3、案例描述
师:今天,在 学习小数的加减法之前,请你们独立解决一个问题:笑笑在书店买一套《中国儿童百科全书》花了148元,还剩下53元,笑笑带了多少钱? 师:淘气跟笑笑一起到书店买书,也有一个问题,看谁有办法帮他解决? 淘气在书店买一本《童话故事》,花了3. 2元,他又买了一本数学世界,花了11. 5元。淘气一共花了多少元?(鼓励学生迎接挑战,认真审题,先列出算式,教师巡堂,再到黑板前列出算式:3.2+11.5=?)
师:(指着算式)这是我看到的一些同学所列的算式,有没有列式和这个不同的?(学生还可能列出11.5+3.2=?教师也把它写到黑板上,给予肯定) 师:为了帮淘气解决付钱的问题,大家都列出了正确的算式。可我们都没有尝试过两个小数怎么相加。现在就来试一试看谁能独立发现小数加法的算法。 (1)学生独立思考,自主探索。 (2)在独立思考的基础上,小组交流。
(3)看一看教材中三位小朋友是怎么计算的。其中哪种算法和你的一样,哪种你没想到?你还有不同的算法吗?
(4)小组讨论:教材中的三种算法各有什么特点和相同之处?小数相加时,为什么智慧老人特别强调“小数点一定要对齐?”
(5)全班围绕“为什么小数点一定要对齐”交流,教师归纳小结,明晰小数加法的算理。
师:多位数相加时,个位数字一定要对齐。这是为什么呢?因为相同数位(单位)上的数才能相加;个位对齐了,所有的数位也都对齐了。小数相加时,小数点一定要对齐也是这个道理。只要小数点对齐了,所有的数位也都对齐了。教材中前两种算法的共同特点是化去小数点,把小数相加变成整数相加,但“相
— 25