内容发布更新时间 : 2024/12/27 15:01:48星期一 下面是文章的全部内容请认真阅读。
利用已有准确地理坐标和投影信息的扫描地形图或矢量地形图,对原始遥感影像进行纠正,使其具有准确的地理坐标和投影信息。
图9 参考地形图
图10 待纠正影像
图11 纠正后影像和地形图套和效果
(3)图像对已知坐标点(地面控制点)
利用已有准确地理坐标和投影信息的已知坐标点或地面控制点,对原始遥感影像进行纠正,使其具有准确的地理坐标和投影信息。 4.正射纠正
利用已有地理参考数据(影像、地形图和控制点等)和数字高程模型数据(DEM、GDEM),对原始遥感影像进行纠正,可消除或减弱地形起伏带来的影像变形,使得遥感影像具有准确的地面坐标和投影信息。
图12 数字正射影像图
三.图像增强
为使遥感图像所包含的地物信息可读性更强,感兴趣目标更突出,需要对遥感图像进行增强处理。 1.彩色合成
为了充分利用色彩在遥感图像判读和信息提取中的优势,常常利用彩色合成的方法对多光谱图像进行处理,以得到彩色图像。
彩色图像可以分为真彩色图像和假彩色图像。
图13真彩色合成( TM321)
图14 假彩色合成(TM432) 2.直方图变换
统计每幅图像的各亮度的像元数而得到的随机分布图,即为该幅图像的直方图。
一般来说,包含大量像元的图像,像元的亮度随机分布应是正态分布。直方图为非正态分布,说明图像的亮度分布偏亮、偏暗或亮度过于集中,图像的对比度小,需要调整该直方图到正态分布,以改善图像的质量。
图15 直方图拉伸前(原图偏暗)
图16 直方图拉伸后
图17 直方图拉伸前(原图对比度不强)
图18 直方图拉伸后(线性拉伸) 3.密度分割
将灰度图像按照像元的灰度值进行分级,再分级赋以不同的颜色,使原有灰度图像变成伪彩色图像,达到图像增强的目的。
图19 原始图像
图20 密度分割图像 4.灰度颠倒
灰度颠倒是将图像的灰度范围先拉伸到显示设备的动态范围(如0~255)到饱和状态,然后再进行颠倒,使正像和负像互换。
图21 灰度颠倒前 图22 灰度颠倒后 5.图像间运算
两幅或多幅单波段图像,空间配准后可进行算术运算,实现图像的增强。常见的有加法运算、减法运算、比值运算和综合运算。例如:
减法运算:可突现出两波段差值大的地物,如红外-红,可突现植被信息。 比值运算:常用于计算植被指数、消除地形阴影等。 植被指数:NDVI=(IR-R)/(IR+R)