内容发布更新时间 : 2025/1/9 17:22:53星期一 下面是文章的全部内容请认真阅读。
2016届应用化学专业毕业论文—英文翻译
花瓣和相互连接的纳米颗粒的形态有利于减少电子空穴对的再结合。因此,纳米Bi4NbO8Cl的降解速率比块状的高。
4 结论
Bi4NbO8Cl纳米颗粒已经通过溶液燃烧方法首次合成。纳米Bi4NbO8Cl的形态呈拨浪鼓状微观颗粒组成的分层花瓣状纳米结构,而块状Bi4NbO8Cl则由固体技术微观合成。纳米Bi4NbO8Cl (3.4 eV)的带隙比块状的(2.6 eV)更快,这与量子限制效应一致。对刚果红的光催化降解存在纳米Bi4NbO8Cl相比于块状的增强。纳米Bi4NbO8Cl活性的增加是由于其独特的形态,拨浪鼓型颗粒和纳米花瓣构成的多孔纳米结构。这一推断的验证是通过减少的光致发光强度,进而观察到纳米Bi4NbO8Cl标记的激子的再结合速率较少,促使光催化降解更快。另外,矿化研究表明,纳米Bi4NbO8Cl可以在80 min降解有机碳75.31 %。反应动力学证实降解反应遵循准一级。光催化机理的途径表明过氧化物触发了刚过红进行氧化还原反应。这项研究显示,材料的带隙,粒子尺寸和多孔形态的自身和相互作用可获得高效率,并证实了表面可调整层状纳米材料是阳光促使的光催化的潜在候选人。
13
景凡:环境友好型铋基材料的制备及其性能研究
5参考文献
[1] D. Ravelli, D. Dondi, M. Fagnoni and A. Albini, Chem. Soc. Rev., 2009, 38,
1999–2011.
[2] Y. Qu and X. Duan, Chem. Soc. Rev., 2013, 42, 2568–2580. [3] R. V. A. G. Madras, J. Indian Inst. Sci., 2010, 90.
[4] M. D. Hernandez-Alonso, F. Fresno, S. Sua′rez and J. M.Coronado, Energy Environ.
Sci.,2009, 2, 1231.
[5] P. Kanhere, P. Shenai, S. Chakraborty, R. Ahuja, J. Zheng and Z. Chen, Phys. Chem.
Chem. Phys., 2014, 16, 16085–16094.
[6] K.Ren, J. Liu, J. Liang, K. Zhang, X. Zheng,H. Luo, Y.Huang,P. Liu and X. Yu,
Dalton Trans., 2013, 42, 9706–9712.
[7] L. Chen, W. Guo, Y. Yang, A. Zhang, S. Zhang, Y. Guo and Y. Guo, Phys. Chem.
Chem. Phys., 2013, 15, 8342–8351.
[8] Q. Zhang, Y. Zhou, F. Wang, F. Dong, W. Li, H. Li and G. R. Patzke, J. Mater. Chem.
A, 2014, 2, 11065.
[9] Y. Mi, M. Zhou, L. Wen, H. Zhao and Y. Lei, Dalton Trans.,2014, 43, 9549–9556. [10] M. D. Regulacio, C. Ye, S. H. Lim, Y. Zheng, Q. H. Xu and M. Y. Han,
CrystEngComm, 2013, 15, 5214.
[11] A. H. Reshak, Phys. Chem. Chem. Phys., 2014, 16, 10558–10565.
[12] Y. Zhiyong, D. Bahnemann, R. Dillert, S. Lin and L. Liqin,J. Mol. Catal. A: Chem.,
2012, 365, 1–7.
[13] X. Xiao, C. Liu, R. Hu, X. Zuo, J. Nan, L. Li and L. Wang,J. Mater. Chem., 2012, 22,
22840.
[14] X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang and R. Liu,Sci. Rep., 2014, 4,
4596.
[15] N. Wu, J. Wang, J. P. Lewis, D. N. Tafen, X. Liu, H. Wang,S. S. Leonard, A.
Manivannan and J. G. Zheng, J. Am. Chem.Soc., 2010, 132, 6679–6685.
[16] M. M. Khan, S. A. Ansari, D. Pradhan, M. O. Ansari, D. H.Han, J. Lee and M. H. Cho,
14
2016届应用化学专业毕业论文—英文翻译
J. Mater. Chem. A, 2014, 2, 637.
[17] J. Li, Y. Yu and L. Zhang, Nanoscale, 2014, 6, 8473–8488. [18] S. S. M. Bhat and N. G. Sundaram, RSC Adv., 2013, 3, 14371.
[19] X. Lin, T. Huang, F. Huang, W. Wang and J. Shi, J. Mater.Chem., 2007, 17, 2145. [20] G. Tian, Y. Chen, W. Zhou, K. Pan, C. Tian, X. Huang and H. Fu, CrystEngComm,
2011, 13, 2994.
[21] L. Cai, P. M. Rao and X. Zheng, Nano Lett., 2011, 11,872–877. [22] J. Tauc, Mater. Res. Bull., 1970, 5, 721–730.
[23] U. Manzoor, M. Islam, L. Tabassam and S. U. Rahman,Phys. E, 2009, 41, 1669–1672. [24] L. Xin, Y. Jiagu, L. Jingxiang, F. Yueping, X. Jing Xiao and C. Xiaobo, J. Mater.
Chem. A, 2015, 3, 2485–2534.
[25] W. Nianqiang, W. Jin, N. De, W. Hong, Z. Jian, P. L. James,L. Xiaogang, S. L.
Stephen and M. Ayyakkannu, J. Am. Chem.Soc., 2010, 132, 6679–6685. [26] L. Jing, W. Zhou, G. Tian and H. Fu, Chem. Soc. Rev., 2013, 42, 9509–9549. [27] H. P. Wang, D. H. Lien, M. L. Tsai, C. A. Lin, H. C. Chang,K. Y. Lai and J. H. He, J.
Mater. Chem. C, 2014, 2, 3144.
[28] D. Wang, L. Guo, Y. Zhen, L. Yue, G. Xue and F. Fu, J. Mater.Chem. A, 2014, 2,
11716.
[29] Y. Wang and P. Zhang, J. Hazard. Mater., 2011, 192,1869–1875. [30] L. Ye, J. Chen, L. Tian, J. Liu, T. Peng,
15