ÄÚÈÝ·¢²¼¸üÐÂʱ¼ä : 2025/7/8 13:12:21ÐÇÆÚÒ» ÏÂÃæÊÇÎÄÕµÄÈ«²¿ÄÚÈÝÇëÈÏÕæÔĶÁ¡£
н¨¶þÖÐ2018-2019ѧÄê¶ÈÉÏѧÆÚÆÚÖп¼ÊÔÊÔ¾í
¸ßÒ»Êýѧ
ÃüÌâÈË£ºÐܰØÁÖ ÉóÌâÈË£º³Â´ºÃ· ¿¼ÊÔ·¶Î§£º±ØÐÞ1µÚÒ»¡¢¶þ¡¢ÈýÕ ʱ Á¿£º120·ÖÖÓ ×Ü ·Ö£º150·Ö
Ò»¡¢Ñ¡ÔñÌ⣺±¾´óÌâ¹²12СÌ⣬ÿСÌâ5·Ö£¬¹²60·Ö£¬ÔÚÿСÌâ¸ø³öµÄËĸöÑ¡ÏîÖУ¬Ö»ÓÐÒ»ÏîÊÇ·ûºÏÌâĿҪÇóµÄ.
1.ÒÑÖª¼¯ºÏA?{x|x2?1},B?{y|y?x2,x?R}£¬ÔòA?B= £¨ £© A.{x|?1?x?1} B. {x|0?x?1} C. {x|x?0} D.? 2.º¯Êýf(x)?1?x?ln(x?1)µÄ¶¨ÒåÓòÊÇ £¨ £© A.(?1,1] B.(?1,0)(0,1] C.(?1,1) D.(?1,0)(0,1)
3.ÏÂÁÐËÄ×麯Êý£¬±íʾͬһº¯ÊýµÄÊÇ £¨ £©
A.f(x)?x2,g(x)?x B. f(x)?logaax(a?0,a?1),g(x)?3x3 2C.f(x)?lnx2,g(x)?2lnx D. f(x)?x£¬g(x)?xx 4.ÏÂͼÊǶÔÊýº¯Êýy£½logaxµÄͼÏó£¬ÒÑÖªaֵȡ3£¬43£¬35£¬110£¬ÔòͼÏóC1£¬C2£¬C3£¬C4¶ÔÓ¦µÄaÖµÒÀ´ÎÊÇ £¨ £©
A£® 413£¬3£¬10£¬35 B£® 3£¬43£¬110£¬35 C£®3£¬4313£¬5£¬10 D£® 43£¬3£¬35£¬110 5.Èý¸öÊýa?0.32£¬b?logc?20.320.3£¬µÄ´óС˳ÐòÊÇ ( ) A. b 6.ÒÑÖªº¯Êýy?x2?2x?3ÔÚÇø¼ä?a,b?ÉϵÄÖµÓòΪ?2,3?£¬Ôòb?aµÄȡֵ·¶Î§ÊÇ £¨ £© A£®?1,2? B£®?0,2? C£® ???,2? D£®?1,2? 7.º¯Êýf(x)??x2?2(a?2)xÓëg(x)?a?1x?1£¬ÔÚÇø¼ä?1,2?É϶¼ÊǼõº¯Êý£¬ÔòʵÊýa?£¨ £©A£®(?2,?1)?1,2? B£®(?1,0)(1,4] C£®(1,2) D£®(1,3] 8.ÒÑÖªº¯Êýf?x??ax5?bx3?cx?3£¬f??3??7£¬Ôòf?3?µÄֵΪ £¨ £© A.?13 B. ?10 C. 7 D. 13 9.ÈôʵÊýx£¬yÂú×ã|x?1|?ln1y?0£¬Ôòy¹ØÓÚxµÄº¯ÊýͼÏñµÄ´óÖÂÐÎ×´ÊÇ £¨ £© 10.º¯Êýg?x????1??x?2?µÄ·´º¯Êý¼ÇΪf(x)£¬Ôòy?f(x2?3x?2)µÄµ¥µ÷ÔöÇø¼äÊÇ £¨ £© A.???,1? B.?????,3?2?? C£®?2,??? D£®??3??2,???? 11.ÒÑÖªº¯Êýf(x)???x?1,x?2?2?logax,x?2(a?0ÇÒa?1)µÄ×î´óֵΪ1,Ôò µÄȡֵ·¶Î§ÊÇ( ) A. ??1??1??2,1?? B£®?0,1? C£®??0,2?? D£®?1,??? 12.¸ß˹Êǵ¹úÖøÃûµÄÊýѧ¼Ò£¬½ü´úÊýѧµì»ùÕßÖ®Ò»£¬ÏíÓС°ÊýѧÍõ×Ó¡±µÄ³ÆºÅ£¬ËûºÍ°¢»ùÃ׵¡¢Å£¶Ù²¢ÁÐΪÊÀ½çÈý´óÊýѧ¼Ò£¬ÓÃÆäÃû×ÖÃüÃûµÄ¡°¸ß˹º¯Êý¡±Îª£ºÉèx?R£¬ÓÃ?x?±íʾ²»³¬¹ýxµÄ×î´óÕûÊý£¬Ôòy??x?³ÆÎª¸ß˹º¯Êý£¬ÀýÈ磺 ??3.5???4£¬ ?2.1??2£¬ÒÑÖªº¯Êý exf?x??1?ex?12£¬Ôòº¯Êýy???f?x???µÄÖµÓòÊÇ £¨ £© A£®?0,1? B.?1? C.??1,0,1? D.??1,0? ¶þ¡¢Ìî¿ÕÌ⣺±¾´óÌâ¹²4СÌ⣬ÿСÌâ5·Ö£¬¹²20·Ö£¬°Ñ´ð°¸ÌîÔÚÌâÖкáÏßÉÏ. 13.ÒÑÖªÃݺ¯Êýy?f?x?µÄͼÏó¹ý??2??2,2??£¬Ôòf?9?£½________ ??14.Èôº¯Êýf(x)?(k?2)x2?(k?1)x?2ÊÇżº¯Êý£¬Ôòk? 15.Èô2a?3,b?log32,Ôòlg(ab)?______ 16.º¯Êý ¶¨ÒåÓòΪ £¬ÈôÂú×ã¢Ù ÔÚ ÄÚÊǵ¥µ÷º¯Êý£»¢Ú´æÔÚ Ê¹ ÔÚ?a,b?ÉϵÄÖµÓòΪ? na,nb?(n?N?,n?1)£¬ÄÇô¾Í³Æ Ϊ¡°Óòn±¶º¯Êý¡±£¬Èôº¯Êý f(x)?loga(ax?t),(a?0,a?1)ÊÇ¡°Óò2±¶º¯Êý¡±£¬Ôò µÄȡֵ·¶Î§Îª Èý¡¢½â´ðÌ⣺±¾´óÌâ¹²6СÌ⣬¹²70·Ö£¬½â´ðӦд³öÎÄ×Ö˵Ã÷£¬Ö¤Ã÷¹ý³Ì»òÑÝËã²½Öè. 17.(±¾Ð¡ÌâÂú·Ö10·Ö) ¼ÆËãÏÂÁи÷ʽµÄÖµ£º 21£©83?(12)?2?(1681)?3£¨4?(2?1)0£» £¨2£©2lg5?223lg8?lg5?lg20??lg2? 18.(±¾Ð¡ÌâÂú·Ö12·Ö) ÒÑÖª¶þ´Îº¯Êýf(x)Âú×㣺f(0)?1,f(x?1)?f(x)?2x.£¨1£©Çóf(x)µÄ½âÎöʽ£» £¨2£©Èôµ±x???1,1?ʱ£¬a?f(x)?bºã³ÉÁ¢£¬Çób?aµÄȡֵ·¶Î§£® 19.(±¾Ð¡ÌâÂú·Ö12·Ö) ÒÑÖªº¯Êýf(x)?ax,(a?0,a?1). £¨1£©Èôf(1)?f(?1)?52,£¬Çóf(2)?f(?2)µÄÖµ; £¨2£©Èôº¯Êýf(x)ÔÚ??1,1?ÉϵÄ×î´óÖµÓë×îСֵµÄ²îΪ 83£¬ÇóʵÊýaµÄÖµ£® 20.(±¾Ð¡ÌâÂú·Ö12·Ö) ÒÑÖªº¯Êýf(x)?x2?x?b,f(log2a)?b,log2f(a)?2£¬ÆäÖÐa?1,b?R. £¨1£©Çóa?bµÄÖµ; £¨2£©Èôf(log2x)?f(1)ÇÒlog2f(x)?f(1),ÇóxµÄȡֵ·¶Î§£® 21.(±¾Ð¡ÌâÂú·Ö12·Ö) ÒÑÖªº¯Êýf(x)?a2x?2a?x1?b(a?0,b?ÔÚ1Çø)¼ä[2,3ÉÏ ]µÄÖµÓòΪ[1,4£¬]Éèg(x)?f(x)x. £¨1£©Çóa,bµÄÖµ£» £¨2£©²»µÈʽg(2x)?k?2x?0ÔÚx?[?2,?1]ÉϺã³ÉÁ¢£¬ÇóʵÊýkµÄȡֵ·¶Î§. 22.(±¾Ð¡ÌâÂú·Ö12·Ö) ÒÑÖªf(x)ÊǶ¨ÒåÔÚRÉϵĺ¯Êý,¶Ô?x?R,¾ùÓÐf(x)?f(?x)£¬ÇÒÔÚ???,0?ÉÏΪ¼õº¯Êý£¬Ñо¿²»µÈʽ:f??log2x?2?alog2x?b??f(2). £¨1£©µ±b?3ʱ£¬¶ÔÈÎÒâµÄx?[2,8]ʱ£¬ÉÏÊö²»µÈʽ³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£» £¨2£©ÈôÉÏÊö²»µÈʽ¶ÔÈÎÒâµÄx?[m,n]³ÉÁ¢£¬Çó nmµÄ×î´óÖµ.