保险精算练习题 下载本文

内容发布更新时间 : 2024/12/22 22:12:08星期一 下面是文章的全部内容请认真阅读。

.

1.李华1990年1月1日在银行帐户上有5000元存款,(1)在每年10%的单利下,求1994年1月1日的存款额。(2)在年利率8%的复利下,求1994年5月1日的存款额。 解:(1)5000×(1+4×10%)=7000(元) (2)5000×(1+10%)4.33=7556.8(元)

2.把5000元存入银行,前5年的银行利率为8%,后5年年利率为11%,求10年末的存款累计额。

解:5000(1+8%)5×(1+11%)5=12385(元)

3.李美1994年1月1日在银行帐户上有10000元存款。(1)求在复利11%下1990年1月1日的现值。(2)在11%的折现率下计算1990年1月1日的现值。 解:(1)10000×(1+11%)-4=5934.51(元) (2)10000×(1-11%)4=6274.22(元)

4.假设1000元在半年后成为1200元,求 ⑴

i(2),⑵ i, ⑶ d(3)。

i(2))?1200;所以i(2)??0.4 解:⑴ 1000?(1?2i(2)2);所以i?0.44 ⑵1?i?(1?2(n)i(m)md?1?n(1?)?1?i?(1?d)?(1?)⑶;

mnd(3)3?1(3)(1?)?(1?i)?0.34335 所以, ;d3

.

.

5.当n?1时,证明:d(n)d?d证明:①

?d(n)???i(n)?i。

为,

(n)(n)(n)d(n)nddd01231?d?(1?)?Cn?1?Cn??Cn?()2?Cn?()3??nnnn

?1?d所以得到,

(n)

d?d(n);

(n)d?? ②

??md(n)?m(1?e);e??m?1??C?()?C?()?C?()???1?mmmmm

?2n?23n?34n?4?

(n)d?m[1?(1?所以,

?m)]??③

??i(n)

i(n)ni(n)[1?]?1?i, 即,n?ln(1?)?ln(1?i)??nn?(n)ni?n?(e?1) 所以,

?e?1?n?C?()?C?()?C?()???1?

mmmmm?

?2n?23n?34n?4?i(n)?n[(1?)?1]??n.

.

i(n)?i

(n)(n)(n)iiin0122(n)in[1?]?C?1?C??C?()???1?i[1?]?1?i,nnn

nnnn(n)所以,

i(n)?i

m6.证明下列等式成立,并进行直观解释: ⑴

am?n?am?van1?v?im?n;

1?vv?vavan?v?a解:m?n,m,

iimmm?n1?v?v?vma?va??a所以,mnm?n

imm1?v?imnmm?n

a?a?vs⑵m?nmna解:m?n1?v?imm;

m?n,

amm1?v?immmm?nv?vm?vsn?,

i

1?v?v?va?vsn?所以,mim⑶

m?n?am?n;

sm?n?sm?(1?i)anm解:msnm?nm(1?i)?1(1?i)?1(1?i)?(1?i)mm?(1?i)s?(1?i)?,niii

.