内容发布更新时间 : 2024/12/31 7:17:01星期一 下面是文章的全部内容请认真阅读。
Ⅰ Ⅱ Ⅲ 0 2.37 8.77 2.86 2.04 0.15 0 0.63 2.65
3、用查到的新资料,说明毒物的联合作用。
4、试说明化学物质致突变、致癌和抑制酶活性的生物化学作用机理。
答:(1)致突变作用机理:致突变性是指生物体中细胞的遗传性质在受到外源性化学毒物低剂量的影响和损伤时,以不连续的跳跃形式发生了突然的变异.致突变作用发生在一般体细胞时,则不具有遗传性质,而是使细胞发生不正常的分裂和增生,其结果表现为癌的形成.致突变作用如影响生殖细胞而使之产生突变时,就有可能产生遗传特性的改变而影响下一代,即将这种变化传递给子细胞,使之具有新的遗传特性.
(2)致癌机理:致癌是体细胞不受控制的生长.其机理一般分两个阶段:第一是引发阶段,即致癌物与DNA反应,引起基因突变,导致遗传密码改变.第二是促长阶段,主要是突变细胞改变了遗传信息的表达,增殖成为肿瘤,其中恶性肿瘤还会向机体其他部位扩展.
(3)抑制酶活性作用机理:有些有机化合物与酶的共价结合,这种结合往往是通过酶活性内羟基来进行的;有些重金属离子与含硫基的酶强烈结合;某些金属取代金属酶中的不同金属. 5、解释下列名词概念:
①被动扩散;②主动转运;③肠肝循环;④血脑屏障;⑤半数有效剂量(浓度);⑥阈剂量(浓度);⑦助致癌物;⑧促癌物;⑨酶的可逆和不可逆抑制剂。
答:答:(1)被动扩散:脂溶性物质从高浓度侧向低浓度侧,即顺浓度梯度扩散通过有类脂层屏障的生物膜.
(2)主动转运:在需要消耗一定代谢能量下,一些物质可在低浓度侧与膜上高浓度特异性蛋白载体结合,通过生物膜,至高浓度侧解离出原物质.
(3)肠肝循环:有些物质由胆汁排泄,在肠道运行中又重新被吸收,该现象叫肠肝循环. (4)血脑屏障:脑毛细血管阻止某些物质(多半是有害的)进入脑循环血的结构.
(5)半数有效剂量(浓度):毒物引起受试生物的半数产生同一毒作用所需的毒物剂量(浓度). (6)阈剂量(浓度):在长期暴露毒物下,会引起机体受损害的最低剂量(浓度). (7)助致癌物:可加速细胞癌变和已癌变细胞增殖成瘤块的物质. (8)促癌物:可使已经癌变细胞不断增殖而形成瘤块.
(9)酶的可逆和不可逆抑制剂:抑制剂就是能减小或消除酶活性,而使酶的反应速率变慢或停止的物质.其中,以比较牢固的共价键同酶结合,不能用渗析,超滤等物理方法来恢复酶活性的抑制剂,称为不可逆抑制剂;另一部分抑制剂是同酶的结合处于可逆平衡状态,可用渗析法除去而恢复酶活性的物质,称为可逆抑制剂.
6、试简要说明氯乙烯致癌的生化机制,和在一定程度上防御致癌的解毒转化途径。
第六章 典型污染物在环境各圈层中的转归与效应
1、 为什么Hg2+和CH3Hg+在人体内能长期滞留?举例说明它们可形成哪些化合物。
答:这是由于汞可以与生物体内的高分子结合,形成稳定的有机汞络合物,就很难排出体外.此外,烷基汞具有高脂溶性,且它在生物体内分解速度缓慢(其分解半衰期约为70d),因而会在人体内长期滞留.
Hg2+和CH3Hg+ 可以与羟基,组氨酸,半胱氨酸,白蛋白形成络合物.甲基汞能与许多有机配
位体基团结合,如—COOH,—NH2,—SH,以及—OH等.
2、 砷在环境中存在的主要化学形态有哪些?其主要转化途径有哪些?
答:砷在环境中存在的主要化学形态有五价无机砷化合物,三价无机砷化合物,一甲基胂酸及其盐,二甲基胂酸及其盐,三甲基胂氧化物,三甲基胂,砷胆碱,砷甜菜碱,砷糖等.
砷的生物甲基化反应和生物还原反应是砷在环境中转化的重要过程.主要转化途经如下:
3、 试述PCDD是一类具有什么化学结构的化合物?并说明其主要污染来源。 答:
1)PCDD这类化合物的母核为二苯并一对二恶英,具有经两个氧原子联结的二苯环结构.在两个苯环上的1,2,3,4,6,7,8,9位置上可有1-8个取代氯原子,由氯原子数和所在位置的不同可能组合成75种异构体,总称多氯联苯并一对二恶英.其结构式如右:
(2)来源:①在焚烧炉内焚烧城市固体废物或野外焚烧垃圾是PCDD的主要大气污染源.例如存在于垃圾中某些含氯有机物,如聚氯乙烯类塑料废物在焚烧过程中可能产生酚类化合物和强反应性的氯,氯化氢等,从而进一步生产PCDD类化合物的前驱物.除生活垃圾外,燃料(煤,石油),枯草败叶(含除草剂),氯苯类化合物等燃烧过程及森林火灾也会产生PCDD类化合物.②在苯氧酸除草剂,氯酚,多氯联苯产品和化学废弃物的生产,冶炼,燃烧及使用和处理过程中进入环境.③另外,还可能来源于一些意外事故和战争.
4、 简述多氯联苯PCBs在环境中的主要分布、迁移与转化规律。 答:(1)分布:由于多氯联苯挥发性和水中溶解度较小,故其在大气和水中的含量较少.近期报导的数据表明,在地下水中发现PCBs的几率与地表水中相当.此外,由于PCBs易被颗粒物所吸附,故在废水流入河口附近的沉积物中,PCBs含量较高. 水生植物通常可从水中快速吸收PCBs,其富集系数为1×l04~l×l05.通过食物链的传递,鱼体中PCBs的含量约在l~7mg/kg范围内(湿重).在某些国家的人乳中也检出一定量的PCBs. (2)迁移:PCBs主要在使用和处理过程中,通道挥发进入大气,然后经干,湿沉降转入湖泊和海洋.转入水体的PCBs极易被颗粒物所吸附,沉入沉积物,使PCBs大量存在于沉积物中.虽然近年来PCBs的使用量大大减少,但沉积物中的PCBs仍然是今后若干年内食物链污染的主要来源.
(3)转化:PCBs由于化学惰性而成为环境中持久性污染物,它在环境中主要转化途径是光化学分解和生物转化.PCBs在紫外光的激发下碳氯键断裂,而产生芳基自由基和氯自由基,自由基从介质中取得质子,或者发生二聚反应.PCBs生物降解时,含氯原子数目越少,越容易降解.
5、 根据多环芳烃形成的基本原理,分析讨论多环芳烃产生与污染的来源有哪些? 表面活性剂有哪些类型?对环境和人体健康的危害是什么?
第七章 受污染环境的修复
1.微生物修复所需的环境条件是什么?
微生物修复技术是指通过微生物的作用清除土壤和水体中的污染物,或是使污染物无害化的过程。它包括自然和人为控制条件下的污染物降解或无害化过程。在自然修复过程(natural attenuation)中,利用土著微生物(indigenous microorganism)的降解能力,但需要有以下环境条件:①有充分和稳定的地下水流;②有微生物可利用的营养物;③有缓冲pH的能力;④有使代谢能够进行的电子受体。如果缺少一项条件,将会影响生物修复的速率和程度。特别是对于外来化合物,如果污染新近发生,很少会有土著微生物能降解它们,所以需要加入有降解能力的外源微生物(exogenous microorganism)。
2.请列举几种强化微生物原位修复技术。
原位强化修复技术包括生物强化法、生物通气法、生物注射法、生物冲淋法及生物翻耕法等。
(1)生物强化法是指在生物处理体系中投加具有特定功能的微生物来改善原有处理体系的处理效果,如对难降解有机物的去除等。投加的微生物可以来源于原来的处理体系,经过驯化、富集、筛选、培养达到一定数量后投加,也可以
是原来不存在的外源微生物。
(2)生物通气法(bioventing)用于修复受挥发性有机物污染的地下水水层上部通气层(Vadose Zone)土壤。这种处理系统要求污染土壤具有多孔结构以利于微生物的快速生长。另外,污染物应具有一定的挥发性,亨利常数大于1.01325Pa·m3·mol-1时才适于通过真空抽提加以去除。生物通气法的主要制约因素是影响氧和营养物迁移的土壤结构,不适的土壤结构会使氧和营养物在到达污染区之前被消耗。
(3)生物注射法(biosparging)又称空气注射法,这种方法适用于处理受挥发性有机物污染的地下水及上部土壤。处理设施采用类似生物通气法的系统,但这里的空气是经过加压后注射到污染地下水的下部,气流加速地下水和土壤有机物的挥发和降解。也有人把生物注射法归入生物通气法。
(4)生物冲淋法(bioflooding)将含氧和营养物的水补充到亚表层,促进土壤和地下水中的污染物的生物降解。生物冲淋法大多在各种石油烃类污染的治理中使用,改进后也能用于处理氯代脂肪烃溶剂,如加入甲烷和氧促进甲烷营养菌降解三氯乙烯和少量的氯乙烯。
(5)土地耕作法(land farming)就是对污染土壤进行耕犁处理。在处理过程中施加肥料,进行灌溉,施加石灰,从而尽可能为微生物代谢污染物提供一个良好环境,使其有充足的营养、水分和适宜的pH值,保证生物降解在土壤的各个层面上都能发生。
3.请列举几种强化微生物异位修复技术。
异位生物修复主要包括堆肥法、生物反应器处理、厌氧处理。
(1)堆肥法(composting)是处理固体废弃物的传统技术,被用于受石油、洗涤剂、多氯烃、农药等污染土壤的修复处理,取得了很好的处理效果。堆肥过程中,将受污染土壤与水(达到至少35%含水量)、营养物、泥炭、稻草和动物肥料混合后,使用机械或压气系统充氧,同时加石灰以调节pH。经过一段时间的发酵处理,大部分污染物被降解,标志着堆肥完成。经处理消除污染的土壤可返回原地或用于农业生产。堆肥法包括风道式堆肥处理、好气静态堆肥处理和机械堆肥处理。
(2)生物反应器处理(bioreactor)是把污染物移到反应器中完成微生物的代谢过程。这是一种很有价值和潜力的处理技术,适用于处理地表土及水体的污染。生物反应器包括土壤泥浆生物反应器(soil slurry bioreactor)和预制床反应器(prepared bed reactor)。
(3)厌氧处理对某些具有高氧化状态的污染物的降解,如三硝基甲苯、多
氯取代化合物(PCBs等)等,比耗氧处理更为有效。但总的来说,在生物修复中好氧方法的使用要比厌氧方法广泛得多。主要原因是,严格的厌氧条件难于达到,厌氧过程中会产生一些毒性更大、更难降解的中间代谢产物。此外,厌氧发酵的终产物H2S和CH4也存在毒性和风险。
4.植物修复重金属的主要过程是什么?
根据其作用过程和机理,重金属污染土壤的植物修复技术可分为3种类型。 (1)植物提取:利用重金属超积累植物从土壤中吸取一种或几种重金属,并将其转移、储存到地上部分,随后收割地上部分并集中处理,连续种植这种植物,即可使土壤中重金属含量降低到可接受的水平。
所谓超积累植物(hyperaccumulator),是指对重金属的吸收量超过一般植物100倍以上的植物,超积累植物积累的Cr、Co、Ni、Cu、Pb含量一般在110mg/ kg(干重) 以上,积累的Mn、Zn含量一般在10mg/ kg(干重)以上。
超积累植物从根际吸收重金属,并将其转移和积累到地上部,这个过程中包括许多环节和调控位点:①跨根细胞质膜运输;②根皮层细胞中横向运输;③从根系的中柱薄壁细胞装载到木质部导管;④木质部中长途运输;⑤从木质部卸载到叶细胞(跨叶细胞膜运输);⑥跨叶细胞的液泡膜运输。在组织水平上,重金属主要分布在表皮细胞、亚表皮细胞和表皮毛中;在细胞水平,重金属主要分布在质外体和液泡。
(2)植物稳定:利用耐重金属植物的根际的一些分泌物,增加土壤中有毒金属的稳定性,从而减少金属向作物的迁移,以及被淋滤到地下水或通过空气扩散进一步污染环境的可能性。其中包括沉淀、螯合、氧化还原等多种过程。
(3)植物挥发:利用植物的吸收、积累和挥发而减少土壤中一些挥发性污染物,即植物将污染物吸收到体内后将其转化为气态物质,释放到大气中,目前这方面研究最多的是类金属元素汞和非金属元素硒。
5.请说明臭氧与有机污染物反应的主要机理。
(1)臭氧分子的直接氧化反应
臭氧的分子结构呈三角形,中心氧原子与其它两个氧原子间的距离相等,在分子中有一个离域π键,臭氧分子的特殊结构使得它可以作为偶极试剂、亲电试剂和亲核试剂。与有机物的直接反应机理可以分为三类:
① 打开双键发生加成反应。
由于臭氧具有一种偶极结构,因此可以同有机物的不饱和键发生1,3偶极环加成反应,形成臭氧化的中间产物,并进一步分解形成醛、酮等羰基化合物和