内容发布更新时间 : 2024/11/16 23:46:51星期一 下面是文章的全部内容请认真阅读。
第四章 微分学的应用
一、本章学习要求与内容提要
(一)学习要求
1.了解罗尔中值定理、拉格朗日中值定理与柯西中值定理. 2.会用洛必达法则求未定式的极限.
3.掌握利用一阶导数判断函数的单调性的方法. 4.理解函数的极值概念,掌握利用导数求函数的极值的方法,会解简单一元函数的最大值与最小值的应用题.
5.会用二阶导数判断函数图形的凹性及拐点,能描绘简单函数的图形.
重点 用洛必达法则求未定式的极限,利用导数判断函数的单调性与图形凹性及拐点,利用导数求函数的极值的方法以及求简单一元函数的最大值与最小值的应用题.
(二)内容提要
1. 三个微分中值定理 ⑴ 罗尔(Rolle)定理
如果函数y?f(x)满足下列三个条件: ①在闭区间[a,b]上连续; ②在开区间(a,b)内可导; ③f(a)?f(b),
则至少存在一点??(a,b),使f?(?)?0.
⑵ 拉格朗日(Lagrange)中值定理 如果函数y?f(x)满足下列两个条件: ①在闭区间[a,b]上连续; ②在开区间(a,b)内可导,
则至少存在一点??(a,b),使得f?(?)?⑶ 柯西(Cauchy)中值定理
如果函数f(x)与g(x)满足下列两个条件: ①在闭区间[a,b]上连续;
②在开区间(a,b)内可导,且g?(x)?0,x?(a,b), 则在(a,b)内至少存在一点?,使得
f(b)?f(a),或f(b)?f(a)?f?(?)(b?a).
b?a 2.洛必达法则 如果
f(b)?f(a)f?(?)?.
?g(b)?g(a)g(?)①limf(x)?0,limg(x)?0;
x?x0x?x0② 函数f(x)与g(x)在x0某个邻域内(点x0可除外)可导,且g?(x)?0; f?(x)lim③ x?xg?(x)?A(A为有限数,也可为?,??或??),则
0
x?x0limf(x)f?(x)?lim?A. x?x0g?(x)g(x)注意 上述定理对于x??时的型未定式也有相应的法则.
3. 函数的单调性定理
0?型未定式同样适用,对于x?x0或x??时的0?设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则有 ①若在(a,b)内f?(x)?0,则函数f(x)在[a,b]上单调增加; ②若在(a,b)内f?(x)?0,则函数f(x)在[a,b]上单调减少. 4 . 函数的极值、极值点与驻点
⑴ 极值的定义 设函数f(x)在点x0的某邻域内有定义,如果对于该邻域内任一点
x(x?x0),都有f(x)?f(x0),则称f(x0)是函数f(x)的极大值;如果对于该邻域内任
一点x(x?x0),都有f(x)?f(x0),则称f(x0)是函数f(x)的极小值.
函数的极大值与极小值统称为函数的极值,使函数取得极值的点x0称为函数f(x)的极值点.
⑵ 驻点 使f?(x)?0的点x称为函数f(x)的驻点.
⑶ 极值的必要条件 设函数f(x)在x0处可导,且在点x0处取得极值,那么
f?(x0)?0.
⑷ 极值第一充分条件
设函数f(x)在点x0连续,在点x0的某一去心邻域内的任一点x处可导,当x在该邻域
内由小增大经过x0时,如果
①f?(x)由正变负,那么x0是f(x)的极大值点,f(x0)是f(x)的极大值; ②f?(x)由负变正,那么x0是f(x)的极小值点,f(x0)是f(x)的极小值; ③f?(x)不改变符号,那么x0不是f(x)的极值点. ⑸ 极值的第二充分条件
设函数f(x)在点x0处有二阶导数,且f??x0??0,f???x0??0,则x0是函数f(x)的极值点,f(x0)为函数f(x)的极值,且有
①如果f??(x0)?0,则f(x)在点x0处取得极大值; ②如果f??(x0)?0,则f(x)在点x0处取得极小值.
5.函数的最大值与最小值
在闭区间上连续函数一定存在着最大值和最小值.连续函数在闭区间上的最大值和最小值只可能在区间内的驻点、不可导点或闭区间的端点处取得.
6. 函数图形的凹、凸与拐点
⑴曲线凹向定义 若在区间(a,b)内曲线y?f(x)各点的切线都位于该曲线的下方,则称此曲线在(a,b)内是向上凹的(简称上凹,或称下凸);若曲线y?f(x)各点的切线都位于曲线的上方,则称此曲线在(a,b)内是向下凹的(简称下凹,或称上凸).
⑵曲线凹向判定定理 设函数在区间(a,b)内具有二阶导数,
① 如果在区间(a,b)内f??(x)?0,则曲线y?f(x)在(a,b)内是上凹的. ② 如果在区间(a,b)内f??(x)?0,则曲线y?f(x)在(a,b)内是下凹的.
⑶拐点 若连续曲线y?f(x)上的点P(x0,y0)是曲线凹、凸部分的分界点,则称点P是曲线y?f(x)的拐点.
7. 曲线的渐近线
⑴水平渐近线 若当x??(或x???或x???)时,有f(x)?b(b为常数),则称曲线y?f(x)有水平渐近线y?b.
?⑵垂直渐近线 若当x?a(或x?a或x?a?)(a为常数)时,有f(x)??,则
称曲线y?f(x)有垂直渐近线
x?a.