内容发布更新时间 : 2025/1/24 3:15:45星期一 下面是文章的全部内容请认真阅读。
中考数学复习专题学案
课题:《动点问题复习专题》
学习目标:
1、知识目标:能够对点在运动变化过程中相伴随的数量关系、图形位置关系等进行观察研究。涉及到平行线、相似三角形的性质,三角函数,方程及函数的知识等。
2、能力目标:进一步发展学生探究性学习、数形结合的能力,培养学生分类讨论及建模等数学思想。提高学生对数学知识的综合应用能力。
3、情感目标:培养浓厚的学习兴趣,养成与他人合作交流的习惯。 复习重点:化“动”为“静”
复习难点:确定运动变化过程中的数量关系、图形位置关系
学法指导:图形中的点、线运动,构成了数学中的一个新问题----动态几何。它通常分为三种类型:动点问题、动线问题、动形问题。在解这类问题时,要充分发挥空间想象的能力,不要被“动”所迷惑,而是要在“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,寻找确定的关系式,就能找到解决问题的途径。 一、问题情景
1、如图:已知平行四边形 ABCD中,AB=7,BC=4,∠A=30° (1)点P从点A沿AB边向点B运动,速度为1cm/s。
若设运动时间为t(s),连接PC,当t为何值时,△PBC为等腰三角形?
DC
4
AB 7 P
二、问题变式训练 小组合作交流讨论
如图:已知平行四边形ABCD中,AB=7,BC=4,∠A=30° (2)若点P从点A沿射线AB运动,速度仍是1cm/s。 当t为何值时,△PBC为等腰三角形?
DCAP 7
4
BP
当BP=BC时D4
C∟ E
A7
B302°3 P
P
当CB=CP时
DC4
A7
B当BP=BC时
DCA7
E B4 当PB=PC
用心 爱心 专心
三、动脑创新 再探新知
(3)当t>7时,是否存在某一时刻t,使得线段DP将线段BC三等分?
DC
AB
D C
AB
四、总结经验 提炼新知
解决动点问题的好助手:
数形结合定相似比例线段构方程 五、实践新知 规律运用
2.在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点P由点A出发 ,沿AC向C匀速运动,速度为2cm/s,同时点Q由AB中点D出发,沿DB向B匀速运动,速度为1cm/s,连接PQ,若设运动时间为t(s) (0<t ≤3) (1)当t为何值时,PQ∥BC?
ABC
(2)设△ APQ的面积为y ,求y与t之间的函数关系。
A
CB
(3)是否存在某一时刻t,使△ APQ的面积与△ ABC的面积比为7︰15?若存在,求出相应的t的
A值;不存在说明理由。 CB
(4)连接DP,得到△QDP,那么是否存在某一时刻t,使得点D在线段QP的中垂线上?若存在,
求出相应的t的值;若不存在,说明理由。
用心 爱心 专心
六、拓展延伸 体验中考
3、(2009中考)如图在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则 △PBQ 周长的最小值是-----cm (结果不取近似值) A D B C 4.如图,已知在直角梯形ABCD中,AD∥BC ,∠B=90°,AB=8cm,AD=24cm,BC=26cm,动点P从点A开始沿AD边向点D,以1cm/秒的速度运动,动点Q从点C开始沿CB向点B以3厘米/秒的速度运动,P、Q分别从点A点C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒,求: 1)t为何值时,四边形PQCD为平行四边形
2) t为何值时,四边形PQCD为等腰梯形?
5.如图(1):在梯形ABCD中,AB∥CD,AD=BC=5cm, AB=4cm,CD=10cm,BE∥AD。如图(2):若整个△BEC从图(1)的位置出发,以1cm/s的速度沿射线CD方向平移,在△BEC平移的同时,点P从点D出发,以1cm/s的速度沿DA向点A运动,当△BEC的边BE与DA重合时,点P也随之停止运动。设运动时间为t(s)(0<t≤4)问题:连接 PE。当t为何值时,△PDE为直角三角形?
AB'BPDE'EC
AB'BPDE'EC
七、综合体验 清点收获
1.化动为静 2 分类讨论 3数形结合 4 。 构建函数模型、方程模型 八、课后作业:1.、整理2、升学指导
用心 爱心 专心