内容发布更新时间 : 2024/12/23 14:08:45星期一 下面是文章的全部内容请认真阅读。
第四章 楼梯
1.按结构形式及受力特点不同将楼梯分为梁式楼梯和板式楼梯。
2.阳台,雨篷,屋顶挑檐等是房屋建筑中常见的悬挑构件。
第五章 抗震
1.地震按其成因可划分为四种:构造地震,火山地震,陷落地震和诱发地震。
2.根据震源深度d,构造地震可分为浅源地震(d<60km),中源地震(60km
3.地震波:地震引起的振动以波的形式从震源向各个方向传播,这种波称为地震波。 体波:在地球内部传播的行波称为体波。 面波:在地球表面传播的行波称为面波。 4.地震灾害会产生:地表破坏,建筑物的破坏和次生灾害。
5.地震震级:表示地震本身强度或大小的一种度量指标。
6.地震烈度:是指某一地区的地面和各种建筑物遭受一次地震影响的强弱程度。 7.建筑抗震设防分类:《抗震规范》根据建筑使用功能的重要性,将建筑抗震设防类别分为以下四类: 甲类建筑:属于重大建筑工程和地震时有可能发生严重次生灾害的建筑。 乙类建筑:属于地震时使用功能不能中断或需尽快恢复的建筑。
丙类建筑:属于甲,乙,丁类建筑以外的一般建筑。
丁类建筑:属于抗震次要建筑。 8.建筑抗震设防目标:“三水准,两阶段” 第一水准:当遭受多遇的低于本地区设防烈度的地震影响时,建筑一般应不受到损坏或不需修理仍能继续使用。 第二水准:当遭受到本地区设防烈度的地震影响时,建筑可能有一定的损坏,经一般修理或不经修理仍能使用。 第三水准:当遭受到高于本地区设防烈度地震影响时,建筑不致倒塌或产生危机生命的严重破坏。 第一阶段设计:按小震作用效应和其他荷载
效应的基本组合盐酸结构构件的承载能力
以及在小震作用下验算结构的弹性变形,以满足第一水准抗震设防目标的要求。 第二阶段设计:在大震作用下验算结构的弹塑性变形,以满足第三水准抗震设防目标的要求。
9.基底隔振技术的基本原理:建筑隔震技术的本质作用,就是通过水平刚度低且具有一定阻尼的隔震器将上部结构与基础或底部结构之间实现柔性连接,使输入上部结构的地震能量和加速度大为降低,并由此大幅度提高建筑结构对强烈地震的防御能力。在许多应用实例中,隔振器是安装在上部结构和基础之间的,因而又称其为基地地震。 10.隔震结构体系基本特征:
A.隔震装置须具有足够的竖向承载力。 B。隔震装置应具有可变的水平刚度。
C.隔震装置具有水平弹性恢复力。 D。隔震装置具有一定的阻尼和效能能力。
第六章 砌体结构设计 1.砌体结构的优点
1)与钢结构和钢筋混凝土结构相比,砌体结构材料来源广泛,取材容易,造价低廉,节约水泥和钢材
2)砌体结构构件具有承重和围护双重功能,且有良好的耐久性和耐火性,使用年限长,维修费用低。砌体特别是砖砌体的保温隔热性能好,节能效果明显。
3)砌体结构房屋构造简单,施工方便,工程总造价低,而且具有良好的整体工作性能,局部的破坏不致引起相邻构件或房屋的倒塌,对爆炸、撞击等偶然作用的抵抗能力较强。
4)砌体结构的施工多为人工砌筑,不需模板和特殊设备,可以节省木材和钢材,新砌筑的砌体上即可承受一定荷载,因而可以连续施工。
5)当采用砌块或大型板材做墙体时,可以减轻结构自重,加快施工进度,进行工业化生产和施工。 2.砌体结构的缺点
1)砌体结构自重大。一般砌体的强度较低,建筑物中墙、柱的截面尺寸较大,材料用量
较多,是引起结构自重大的原因。因此,应加强轻质高强砌体材料的研究,以减小截面尺寸,减轻结构自重。
2)砌筑砂浆和砖、石、砌块之间的黏结力较弱,因此无筋气体的抗拉、抗弯及抗剪强度低,抗震及抗裂性能较差。因此,应研制推广高黏结性砂浆,必要时采用配筋砌体,并加强抗震抗裂的构造措施。
3)砌体结构砌筑工作繁重。砌体基本采用手工方式砌筑,劳动量大,生产效率低。因此,有必要进一步推广砌块、振动砖墙板和混凝土空心墙板等工业化施工方法,以逐步克服这一缺点。
4)砖砌体结构的黏土砖用量很大,往往占用农田,影响农业生产。因此,必须大力发展砌块,煤矸石砖、页岩砖、粉煤灰砖等黏土砖的替代品。
5.烧结普通砖的规格尺寸为240mm*115mm*53mm
6.砂浆包括纯水泥砂浆、混合砂浆、石灰砂浆、黏土砂浆、石膏砂浆(前面两个含水泥) 7.砌体的受压破坏特征
三个阶段:一、属弹性阶段:此阶段裂缝细小,未能穿过砂浆层,如不继续增加压力,单块砖内的裂缝也不继续发展。该阶段横向变形较小,应力——应变呈直线关系
二、若荷载不增加维持恒值,裂缝仍会继续发展,砌体临近破坏
三、荷载增加不多,而裂缝发展很快,并逐渐形成上、下贯通到底的通长裂缝,发生明显的横向变形,向外鼓出,导致失稳而破坏。
8.单块砖在砌体中的受力特点:
1)砖块处于局部受压、受弯、受剪状态 2)由于砖和砂浆受压后的横向变形不同,砖还处于侧向受拉状态 3)竖向灰缝的应力集中 9.影响砌体抗压强度的因素 1)块材的强度和块材的形状
砌体的破坏主要是由于单块砖内发生很大的受剪应力,是砌体产生贯通的竖向裂缝,因而分成几个小立柱以致最后失稳破坏,而并不是每块砖被压碎,即砖的抗压强度未被充分利用,所以砖砌体对砖强度的要
求除了抗压强度外,还有对抗弯强度的要
求。
砖的形状越整齐,规则,表面越光滑受力越均匀,砌体的抗压强度也越高。另外,砖的厚度增加,会增加其抗弯强度,同样可以提高砌体的抗压强度。
2)砂浆强度等级和砂浆的和易性、保水性
砂浆的强度等级越高,不但砂浆自身的承载能力提高,而且受压后的横向变形变小,可减小或避免砂浆对砖产生的水平拉力,在一定程度上可提高砌体的抗压强度。由此也可以看出,砂浆的强度等级对砌体的抗压强度影响不如块材的影响大,且砂浆强度等级提高,水泥用量增加较大。为节约水泥用量,一般不宜用提高砂浆强度等级的方法来提高气体构件的承载力。
另外,砂浆的和易性及保水性越好,越容易铺砌均匀,从而减小块材的弯、剪应力,提高砌体的抗压强度。
3)砌筑质量的影响
砌体的砌筑质量对砌体的抗压强度影响很大。如砂浆层不饱满,则块材受力不均匀;砂浆层过厚,则横向变形过大;砂浆层过薄,不易铺砌均匀;砖的含水率过低,将过多吸收砂浆的水分,影响砌体的抗压强度;若砖的含水率过高,将影响砖与砂浆的黏结力等。为此,我国《砌体工程施工及验收规范》中将施工质量控制等级分为A、B、C三级。
10.高厚比
墙、柱的高厚比越大则构件月细长,其稳定性就越差
Β≤3时称为矮墙、短柱;反之,称为高墙、长柱
3.墙体布置时原则
1)明确传力体系,区分承重墙和非承重墙,要求传力明确,受力合理,使荷载以最简捷的途径经承重墙传至基础。
2)纵墙尽量拉通,避免断开和转折
3)横墙间距不宜过大,对于多层房屋宜满足刚性方案要求,横墙厚度、长度及开洞尺寸宜满足刚性方案房屋对横墙的要求。 4)上下层墙体应连续贯通,前后对齐。 5)门、洞口位置上下对齐,其他孔洞尽量
设在非承重墙上,主要承重墙避免过大开洞。
砌体结构的承重体系
结构布置方案分类:1.横墙承重体系(楼板的两端搁置在横墙上,纵墙不承受自重以外的竖向荷载),纵墙承重体系(楼板的两端置于纵墙上,横墙不承受自重以外的竖向荷载),纵横墙混合承重体系和内空间承重体系。
荷载主要传递路线:楼(屋)面荷载——横墙——基础——地基
特点:横墙为承重墙,承受绝大部分竖向荷载以及横向风荷载、横向地震作用;纵墙主要起围护、隔断和与横墙连接成整体的作用,纵墙只承受自重以及纵向风荷载、纵向地震作用,故墙上开设窗洞口较灵活;横墙间距小且数量多
横墙承重体系
优点:1. 房屋的整体空间刚度大,结构整体性好
2. 版跨度小,结构经济 缺点:1. 平面布置不够灵活
2. 横墙较多,结构面积与自重相应增加。
应用:宿舍楼,住宅建筑 2. 纵墙承重体系
荷载主要传递路线:楼(屋)面荷载——梁——纵墙——基础——地基
特点:纵墙为承重墙,承受绝大部分竖向荷载以及纵向风荷载、纵向地震作用,因此纵墙上门窗洞口的大小及位置受到一定限制;横墙的设置主要是为了满足房屋的空间刚度,横墙承受自重以及横向房荷载、横向地震作用;横墙间距较大且数量较少,
优点:横墙间距课较大,空间划分灵活,
可设计城较大的室内空间。适用于教学楼、办公楼、食堂、礼堂、单层小型厂房等公共建筑
缺点:房屋的整体空间刚度较小
应用:开间较大,不宜设置较多的横墙的建筑
3. 纵横墙混合承重体系
优点:空间组合较灵活,房屋空间刚度较好。
特点:介于上述两种方案之间。纵横墙均承受楼面传来的荷载,因而纵横方向的刚度均较大;开间可比横墙承重体系大,而灵活性却不如纵墙承重体系;纵横墙承重体系适用于教学楼、实验楼、办公楼及医院的门诊楼等。
缺点:构件尺寸不统一
荷载传递路线:楼面荷载?分别传给纵墙和横墙?基础?地基
应用:教学楼,实验楼,办公楼,医院门诊楼
4. 内框架承重体系
荷载传递路线:
---------墙-------
楼面荷载------- 梁----------柱-----------------基础---------地基