内容发布更新时间 : 2024/12/25 15:32:38星期一 下面是文章的全部内容请认真阅读。
第一章 习题
1. 思考题
(1)微分学求极值的方法为什么不适用于线性规划的求解?
(2)线性规划的标准形有哪些限制?如何把一般的线性规划化为标准形式? (3)图解法主要步骤是什么?从中可以看出线性规划最优解有那些特点?
(4)什么是线性规划的可行解,基本解,基可行解?引入基本解和基可行解有什么作用?
(5)对于任意基可行解,为什么必须把目标函数用非基变量表示出来?什么是检验数?它有什么作用?如何计算检验数?
(6)确定换出变量的法则是什么?违背这一法则,会发生什么问题? (7)如何进行换基迭代运算?
(8)大M法与两阶段法的要点是什么?两者有什么共同点?有什么区别? (9)松弛变量与人工变量有什么区别?试从定义和处理方式两方面分析。 (10)如何判定线性规划有唯一最优解,无穷多最优解和无最优解?为什么? 2. 建立下列问题的线性规划模型:
(1)某厂生产A,B,C三种产品,每件产品消耗的原料和设备台时如表1-18所示:
表1-18 产品 原料单耗 机时单耗 利润 A 2 2.5 10 B 3 3 14 C 5 6 20 资源数量 2000 2600 另外,要求三种产品总产量不低于65件,A的产量不高于B的产量。试制定使总利润最大的模型。
(2)某公司打算利用具有下列成分(见表1-19)的合金配制一种新型合金100公斤,新合金含铅,锌,锡的比例为3:2:5。
表1-19 合金品种 含铅% 含锌% 含锡% 单价(元/kg) 1 30 60 10 8.5 2 10 20 70 6.0 3 50 20 30 8.9 4 10 10 80 5.7 5 50 10 40 8.8 如何安排配方,使成本最低?
(3)某医院每天各时间段至少需要配备护理人员数量见表1-20。
1
表1-20
班次 1 2 3 4 5 6 时间 6:00-10:00 10:00-14:00 14:00-18:00 18:00-22:00 22:00-2:00 2:00-6:00 最少人数 60 70 60 50 20 30 假定每人上班后连续工作8小时,试建立使总人数最少的计划安排模型。能否利用初等数学的视察法,求出它的最优解?
(4)某工地需要30套三角架,其结构尺寸如图1-6所示。仓库现有长6.5米的钢材。如何下料,使消耗的钢材最少?
1.7 3 3
1.4 1.4
图1-6
3. 用图解法求下列线性规划的最优解:
(1) min z?4x1?6x2? x1?2x2?1? 4x?3x?1.5 ?12 ???x1?2x2?4??x1,x2?0(3) max z?6x1?9x2? 2x1?3x2??2x ?x12?? ? 4x1?5x2? x2???x1,x2?0
(2) max z?4x1?4x2
? 2x1?3x2?10??x ?x?5?12 ?? x1?2x2?8??x1,x2?0
?22?4?0?6
(4) max z?x1?3x2?4x1?3x2?12 ? ?x ?x?1?12?x,x?0?122
4. 把下列线性规划化为标准形式:
(1) min z??x1?2x2?x3(2) max z?2x1?3x2?? x1 ?x3?x4?1? ??2x1 ?x2?x3 ??2
?x1?2x2?8 ??3x??x1 ?x2 ?1 1 ?x2?x3?x4?1??x1 ?2?x1?0,x2,x3?0x4无约束??x1?0,x2无约束
5. 判定下列集合是否凸集:
(1)R1={(x1,x2)|x12+2x22≤2}
(2)R2={(x1,x2)|x12-2x2+3≥0,x2≥0,|x1|≤1} (3)R3={(x1,x2)|x1x2≥1,x1≥1,x2≥0}
6. 求出下列线性规划的所有基本解,并指出其中的基可行解和最优解。
max z?3x1?5x2??x1 ?x3 ?48 ?? 2x2 ?x4 ?12 ?3x1 ?2x2 ?x5?18??xj?0, j?1,?,5
7. 求下列线性规划的解: (1)
(2)
max z?3x1?5x2?2xmax z?2x1?4x2?1 ?8
?? x2 ?6
? x1?2x2 ?4 ?x
?3x??x1?2 ?11 ?2x2?18???x?x1,x2?01,x2?0(3)
(4)
max z?2xmax z?2x1?x2?x31?x2?
??x1?2x2??2?3x1?x2?x3?60 ???x
??x1?x2?2x3?10 1?x2?1??x1,x2?0?x1?x2?x3?20??x1?0,x2?0,x3?0
3