【小学数学】五年级数学思维训练100题及答案 下载本文

内容发布更新时间 : 2024/11/2 22:25:20星期一 下面是文章的全部内容请认真阅读。

1. 765×213÷27+765×327÷27 解:原式=765÷27×(213+327)= 765÷27×540=765×20=15300

2. (9999+9997+…+9001)-(1+3+…+999)

解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000 (500个9000) =4500000

3.19xx19xx×19xx19xx-19xx19xx×19xx19xx 解:(19xx19xx+1)×19xx19xx-19xx19xx×19xx19xx =19xx19xx×19xx19xx-19xx19xx×19xx19xx+19xx19xx =19xx19xx-19xx19xx =10000

4.(873×477-198)÷(476×874+199) 解:873×477-198=476×874+199 因此原式=1

5.20xx×19xx-19xx×19xx+19xx×19xx-19xx×1996+…+2×1 解:原式=19xx×(20xx-19xx)+19xx×(19xx-1996)+…

+3×(4-2)+2×1

=(19xx+19xx+…+3+1)×2=20xx000。

6.297+293+289+…+209 解:(209+297)*23/2=5819

7.计算:

解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99) =50*(1/99)=50/99

8.

1 / 19

解:原式=(1*2*3)/(2*3*4)=1/4

9. 有7个数;它们的平均数是18。去掉一个数后;剩下6个数的平均数是19;再去掉一个数后;剩下的5个数的平均数是20。求去掉的两个数的乘积。 解: 7*18-6*19=126-114=12 6*19-5*20=114-100=14

去掉的两个数是12和14它们的乘积是12*14=168

10. 有七个排成一列的数;它们的平均数是 30;前三个数的平均数是28;后五个数的平均数是33。求第三个数。

解:28×3+33×5-30×7=39。

11. 有两组数;第一组9个数的和是63;第二组的平均数是11;两个组中所有数的平均数是8。问:第二组有多少个数?

解:设第二组有x个数;则63+11x=8×(9+x);解得x=3。

12.小明参加了六次测验;第三、第四次的平均分比前两次的平均分多2分;比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分;那么第四次比第三次多得几分?

解:第三、四次的成绩和比前两次的成绩和多4分;比后两次的成绩和少4分;推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分;所以第四次比第三次多9-8=1(分)。 13. 妈妈每4天要去一次副食商店;每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示)

解:每20天去9次;9÷20×7=3.15(次)。

14. 乙、丙两数的平均数与甲数之比是13∶7;求甲、乙、丙三数的平均数与甲数之比。 解:以甲数为7份;则乙、丙两数共13×2=26(份)

所以甲乙丙的平均数是(26+7)/3=11(份) 因此甲乙丙三数的平均数与甲数之比是11:7。

15. 五年级同学参加校办工厂糊纸盒劳动;平均每人糊了76个。已知每人至少糊了70个;并且其中有一个同学糊了88个;如果不把这个同学计算在内;那么平均每人糊74个。糊得最快的同学最多糊了多少个?

2 / 19

解:当把糊了88个纸盒的同学计算在内时;因为他比其余同学的平均数多88-74=14(个);而使大家的平均数增加了76-74=2(个);说明总人数是14÷2=7(人)。因此糊得最快的同学最多糊了

74×6-70×5=94(个)。

16. 甲、乙两班进行越野行军比赛;甲班以4.5千米/时的速度走了路程的一半;又以5.5千米/时的速度走完了另一半;乙班在比赛过程中;一半时间以4.5千米/时的速度行进;另一半时间以5.5千米/时的速度行进。问:甲、乙两班谁将获胜?

解:快速行走的路程越长;所用时间越短。甲班快、慢速行走的路程相同;乙班快速行走的路程比慢速行走的路程长;所以乙班获胜。

17. 轮船从A城到B城需行3天;而从B城到A城需行4天。从A城放一个无动力的木筏;它漂到B城需多少天?

解:轮船顺流用3天;逆流用4天;说明轮船在静水中行4-3=1(天);等于水流3+4=7(天);即船速是流速的7倍。所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程;即木筏从A城漂到B城需24天。

18. 小红和小强同时从家里出发相向而行。小红每分走52米;小强每分走70米;二人在途中的A处相遇。若小红提前4分出发;且速度不变;小强每分走90米;则两人仍在A处相遇。小红和小强两人的家相距多少米?

解:因为小红的速度不变;相遇地点不变;所以小红两次从出发到相遇的时间相同。也就是说;小强第二次比第一次少走4分。由

(70×4)÷(90-70)=14(分)

可知;小强第二次走了14分;推知第一次走了18分;两人的家相距

(52+70)×18=2196(米)。

19. 小明和小军分别从甲、乙两地同时出发;相向而行。若两人按原定速度前进;则4时相遇;若两

人各自都比原定速度多1千米/时;则3时相遇。甲、乙两地相距多少千米?

解:每时多走1千米;两人3时共多走6千米;这6千米相当于两人按原定速度1时走的距离。所以甲、乙两地相距6×4=24(千米)

20. 甲、乙两人沿400米环形跑道练习跑步;两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度增加2米/秒;乙比原来速度减少2米/秒;结果都用24秒同时回到原地。求甲原来的速度。

解:因为相遇前后甲、乙两人的速度和不变;相遇后两人合跑一圈用24秒;所以相遇前两人合跑一圈也用24秒;即24秒时两人相遇。

3 / 19