沪科版八年级数学上册教案:11.1平面内点的坐标 (第一课时)教案 下载本文

内容发布更新时间 : 2024/12/27 14:11:10星期一 下面是文章的全部内容请认真阅读。

第11章 平面直角坐标系

11.1 平面内点的坐标

第1课时 平面直角坐标系及点的坐标

一、教学内容

本节主要学习平面上点坐标的有关概念,能从平面直角坐标系中写出点的坐标,及能根据坐标确定坐标中点的位置。 二、教学目标

1、通过实际问题抽象出平面直角坐标系及其相关概念,使学生认识平面直角坐标系原点、横轴和纵轴等,会由坐标描点,由点写出坐标;让学生体会到平面上的点与有序实数对之间的对应关系;

2、经历画平面直角坐标系,由点写出坐标和由坐标描点的过程,进一步渗透数形结合的数学思想;

3、培养学生自主探究与合作交流的学习习惯。 三、教学重点

正确认识平面直角坐标系,会准确地由点写出坐标,由坐标描点。 四、教学难点

各象限内坐标的符号及各坐标轴上点坐标的特点,平面上的点与有序实数对之间的对应关系。

五、教学关键:充分体会有序实数对在实际中的应用 六、教学准备:多媒体教学课件、三角尺 七、教学方法:探讨、合作 八、教学过程:

(一)设置问题情境:

1、回顾一下数轴的概念,及实数与数轴有怎样的关系?(学生回答) 2、情境:(多媒体显示)

(1)如图所示请指出数轴上A、B两点所表示的数;直线表一条笔直公路,向东为正方向,原点为学校位置,A、B是位于公路旁两学生家的位置,你能说出它们的位置吗?这说明了什么?

引申:确定一个点在直线上的位置,只需要一个数据,这个实数可称为点在数轴上的坐标。怎样确定平面上一个点的位置呢?

(2)上电影院看电影,电影票上至少要有几个数据才能确定你的位置? (3)在教室里,怎样确定一个同学的位置? (二)观察交流,构建新知

观察、交流、思考,回答教科书第2页的两个问题。 思考:1、确定平面上一点的位置需要什么条件?

2、既然确定平面上一点的位置需要两个数,那么能否用两条数轴建立模型来

表示平面上任一点的位置呢?

教师在学生回答的基础上,边操作边讲出:为了确定平面上一个点的位置,我们先在平面内画两条互相垂直并且原点重合的数轴,水平的数轴叫x轴或横轴,取向右为正方向,垂直的数轴叫y轴或纵轴,取向上为正方向,两轴交点O为原点,这样就建立了平面直角坐标系。这个平面叫做坐标平面。

有了坐标平面,平面内的点就可以用一个有序实数对来表示。

引导观察:如左图中点P可以这样表示:由P 向x轴作垂线,垂足M在x轴上的坐标是-2,点P向y轴作垂线,垂足N在y轴的坐标是3,于是就说点P的横坐标是-2,纵坐标3,把横坐标写在纵坐标前面记作(-2,3),即P点坐标(-2,3)。

引导练习:写出点A、B、C的坐标。 学生相互交流,得出正确答案。 (强调点的坐标的有序性和正确规范书写) 教师提问:已知平面内任意一点,可以写出它的坐标;反之,给出一点的坐标,你能在

上图中描出吗?

试一试:D(1,3) E(-3,2) F(-4,-1) (注意引导学生进行逆向思维)

教师提问:请同学们想一想:原点O的坐标、x轴和y轴上的点坐标有什么特点? 学生发现:O点坐标(0,0),x轴上点的纵坐标为0,y轴上点横坐标为0。试一试:描点:G(0,1),H(1,0) (注意区别) (三)观察思考,探究规律

教师讲解:两条坐标轴把坐标平面分成四个部分:右上部分叫第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限、和第四象限。坐标轴不属于任何象限。

学生活动:观察、认知上图中各象限内已描出各点的坐标特点:第一、二、三、四象限内的点的坐标符号分别是:(+,+)、(—,+)、(—,—)、(+,—)

(四)随堂练习

1、完成教材第3和第4页的1、2两个问题 2、多媒体展示的练习题。

(五)课堂小结:(投影显示,学生归纳)

本节课我们学习了平面直角坐标系。学习本节我们要掌握以下三方面的知识内容: