理论力学复习总结(知识点) 下载本文

内容发布更新时间 : 2024/11/18 14:42:21星期一 下面是文章的全部内容请认真阅读。

例题6 -1 椭圆规机构如图6-4(a)所示,曲柄oc以等角速度w绕O转动,通过连杆AB带动滑块A、B在水平和竖直槽内运动,OC=BC=AC=L 。求:(1)连杆上M点(AM=r)的运动方程;(2)M点的速度与加速度。 解:(1)列写点的运动方程

由于M点在平面内运动轨迹未知,故建立坐标系。点M是BA杆上的一点,该杆两端分别被限制在水平和竖直方向运动。曲柄做等角速转动,Φ=wt 。由这些约束条件写出M点运动方程x=(2L-r)coswt y=rsinwt 消去t 得轨迹方程:(x/2L-r)2+(y/x)2=1

(2)求速度和加速度

对运动方程求导,得 dx/dt=-(2L-r)wsinwt dy/dt=rsinwt 再求导a1=-(2L-r)w2coswt a2=-rw2sinwt 由式子可知a=a1i+a2j=-w2r

6.3自然法

2.自然坐标系:b=t3n 其中b为副法线 n为主法线 t

3.点的速度 v=ds/dt 切向加速度 at=dv/dt 法向加速度 an=v2/p 习题6-10 滑道连杆机构如图所示,曲柄OA长r,按规律θ=θ’+wt 转动(θ以rad计,t以s计),w为一常量。求滑道上C点运动、速度及加速度方程。 解:

第七章 刚体的基本运动

7.1刚体的平行运动:刚体平移时,其内所有各点的轨迹的形状相同。在同一瞬时,所有各点具有相同的速度和相同的加速度。刚体的平移问题可归结为点的运动问题。 7.2刚体的定轴转动:瞬时角速度 w=lim△θ∕△t=dθ/dt

瞬时角加速度a=lim△w∕△t=dw/dt=d2θ/dt2

转动刚体内任一点速度的代数值等于该点至转轴的距离与刚体角速度的乘积 a=√(a2 +b2)=R√(α2+w2) θ=arctan|a|/b =arctan|α|/w2

转动刚体内任一点速度和加速度的大小都与该点至转轴的距离成正比。 例题7-1如图所示平行四连杆机构中,O1A=O2B=0.2m ,O1O2=AB=0.6m ,AM=0.2m ,如O1A按φ=15πt的规律转动,其中φ以rad计,t以s计。试求t=0.8s时,M点的速度与加速度。 解:在运动过程中,杆AB始终与O1O2平行。因此,杆AB为平移,O1A为定轴转动。根据平移的特点,在同一瞬时M、A两点具有相同的速度和加速度。A点做圆周运动,它的运动规律为 s=O1A2φ=3πt m

所以 VA=ds/dt=3π m/s atA=dv/dt=0 anA= (V A) 2/O1A=45 m/s 为了表示Vm 、am 的2,需确定t=0.8s时,AB杆的瞬时位置。当t=0.8s时,s=2.4πm O1A=0.2m , φ=2.4π/0.2=12π,AB杆正好第6次回到起始位置O点处,Vm 、am的方向如图所示。

第8章点的合成运动

8.1合成运动的概念:相对于某一参考系的运动可由相对于其他参考系的几个运动组合而成,这种运动称为合成运动。

当研究的问题涉及两个参考系时,通常把固定在地球上的参考系称为定参考系,简称定系。吧相对于定系运动的参考系称为动参考系,简称动系。研究的对象是动点。动点相对于

定参考系的运动称为绝对运动;动点相对于动参考系的运动称为相对运动;动参考系相对于定参考系的运动称为牵连运动。动系作为一个整体运动着,因此,牵连运动具体有刚体运动的特点,常见的牵连运动形式即为平移或定轴转动。

动点的绝对运动是相对运动和牵连运动合成的结果。绝对运动也可分解为相对运动和牵连运动。在研究比较复杂的运动时,如果适当地选取动参考系,往往能把比较复杂的运动分解为两个比较简单的运动。这种研究方法无论在理论上或实践中都具有重要意义。

动点在相对运动中的速度、加速度称为动点的相对速度、相对加速度,分别用vr和ar

表示。动点在绝对运动中的速度、加速度称为动点的绝对速度和绝对加速度,分别用va和aa表示。换句话说,观察者在定系中观察到的动点的速度和加速度分别为绝对速度和绝对加速度;在动系中观察到动点的速度和加速度分别为相对速度和相对加速度。

在某一瞬时,动参考系上与动点M相重合的一点称为此瞬时动点M的牵连点。如在某瞬时动点没有相对运动,则动点将沿着牵连点的轨迹而运动。牵连点是动系上的点,动点运动到动系上的哪一点,该点就是动点的牵连点。定义某瞬时牵连点相对于定参考系的速度、加速度称为动点的牵连速度、牵连加速度,分别用ve和ae表示。

动系O’x’y’与定系Oxy之间的坐标系变换关系为

x=x0+x’cosθ-y’sinθ y=y0+x’sinθ+y’cosθ

在点的绝对运动方程中消去时间t,即得点的绝对运动轨迹;在点的相对运动方程中消去时间t,即得点的相对运动轨迹。

例题8-4 矿砂从传送带A落到另一传送带B上,如图所示。站在地面上观察矿砂下落的速度为v1=4 m/s ,方向与竖直线成30角。已知传送带B水平传动速度v2=3 m/s.求矿砂相对于传送带B的速度。

解:以矿砂M为动点,动系固定在传送带B上。矿砂相对地面的速度v1为绝对速度;牵连速度应为动参考系上与动点相重合的哪一点的速度。可设想动参考系为无限大,由于它做平移,各点速度都等于v2 。于是v2等于动点M的牵连速度。

由速度合成定理知,三种速度形成平行四边形,绝对速度必须是对角线,因此作出的速度平行四边形如图所示。根据几何关系求得

Vr=√(ve2+va2-2vevacos60o)=3.6 m/s Ve与va间的夹角 β=arcsin(ve/vr*sin60o)=46o12’

总结以上,在分析三种运动时,首先要选取动点和动参考系。动点相对于动系是运动的,因此它们不能处于同一物体;为便于确定相对速度,动点的相对轨迹应简单清楚。

8.3当牵连运动为平移时,动点的绝对加速度等于牵连加速度和相对加速度的矢量和。

第9章 刚体的平面运动

9.1刚体平面运动的分析:其运动方程x=f1(t) y=f2(t) θ=f3(t)完全确定平面运动刚体的运动规律

在刚体上,可以选取平面图形上的任意点为基点而将平面运动分解为平移和转动,其中平面图形平移的速度和加速度与基点的选择有关,而平面图形绕基点转动的角速度和角加速度与基点的选择无关。

9.2刚体平面运动的速度分析:

平面图形在某一瞬时,其上任意两点的速度在这两点的连线上的投影相等,这就是速度投影定理。Vcosa=vcosb

例9-1

椭圆规尺AB由曲柄OC带动,曲柄以匀角速度ω0绕轴O转动,如图9-7所示,OC=BC=AC=r,求图示位置时,滑块A、B的速度和椭圆规尺AB的角速度。

解 已知OC绕轴O做定轴转动,椭圆规尺AB做平面运动,vc=ω0r。

(1) 用基点法求滑块A的速度和AB的角速度。因为C的速度已知,选C为基点。 vA=Vc+VAC

式中的vc的大小和方向是已知的,vA的方向沿y轴,vAC的方向垂直于AC,可以作出速度矢量图,如图9-7所示。 由图形的几何关系可得 vA=2vccos30°=

ω0r,Vac=Vc,Vac=ωABr

解得

ωAB=ω0(顺时针)

(2) 用速度投影定理求滑块B的速度,B的速度方向如图9-7所示。

[vB]BC=[vC]BC Vccos30°=vBcos30° 解得

Vb=vC=ω0r

例9-5

图9-15所示机构中,长为l的杆AB的两端分别与滑块A和圆盘B沿竖直方向光滑移动,半径为R的圆盘B沿水平直线做纯滚动。已知在图示的位置时,滑块A的速度为vA,求该瞬时杆B端的速度、杆AB的角速度、杆AB中点D的速度和圆盘的角速度。

解 根据题意,杆AB做平面运动,vA的方向已知,圆盘中心B的速度沿水平方向,则杆AB的速度瞬心为P点,有 ωAB==

vB=ωAB2BP=vAtanθ vD=ωAB2DP=

2=

圆盘B做平面运动,C点为其速度瞬心,则ωB==tanθ

第三篇 动力学

第10章 质点动力学的基本方程

1. 牛顿第一定律:不受了作用(包括受到平衡力系作用)的质点,将保持静止或做匀速直

线运动。又称惯性定律。

2. 牛顿第二定律:质点的质量与加速度的乘积,等于作用于质点的力的大小,加速度的方

向与力的方向相同。F =ma

3. 牛顿第三定律:两个物体间的作用力与反作用力总是大小相等、方向相反,沿着同一直

线,同时分别作用在这两个物体上。

例10-2:曲柄连杆机构如图10-2(a)。曲柄OA以匀角速度ω转动,OA=r,AB=l,当λ=r/l比较小时,以O为坐标原点,滑块B的运动方程可近似表示为

X=l(1-)+r(cosωt+

)

如滑块的质量为m,忽略摩擦及连杆AB的质量,试求当ψ=ωt=0和时,连杆AB所受的力。

解 以滑块B为研究对象,当ψ=ωt时,其受力如图10-2(b)所示。由于连杆不计质量,AB应为二力杆,所以受平衡力系作用,它对滑块B的拉力F沿AB方向。滑块啱x轴的运动方程

Max=-Fcosβ

由滑块B的运动方程可得

Ax=

=-rω2(cosωt+λcos2ωt)

当ωt=0时,ax=-rω2(1+λ),且β=0,得

F=mrω2(1+λ) 杆AB受拉力。

同理可得,当ωt=时,F=-,杆AB受压力

例10-5

物块在光滑水平面上并与弹簧相连,如图10-5所示。物块的质量为m,弹簧的刚度系数为k。在弹簧拉长变形量为a时,释放物块。求物块的运动规律。

解 以弹簧未变形处为坐标原点O,设物块在任意坐标x处弹簧变形量为|x|,弹簧力大小为F=k|x|,并指向O点,如图10-5所示,则此物块沿x轴的运动微分方程为 m

=Fx=-kx

令ω2n=,将上式化为自由振动微分方程的标准形式 上式的解可写为X=Acos(ωnt+θ)

+ω2nx=0

其中A、θ为任意常数,应由运动的初始条件决定。由题意,当t=0时,=0,x=a,代入上式,解得θ=0,A=a,代入式中,可解得运动方程为X=acosωnt