湿硫化氢腐蚀类型及机理研 下载本文

内容发布更新时间 : 2024/7/2 6:53:35星期一 下面是文章的全部内容请认真阅读。

湿硫化氢腐蚀类型及机理研

杨智华(山东豪迈化工技术)引言随着原油消耗量的不断增加,从国外进口原油的数量也会不断增长,国外原油尤其是中东原油中硫含量会比较高。因此对设备的腐蚀也越来越严重。对设备腐蚀较严重的含硫化合物主要是硫化氢(H2S)。H2S的腐蚀主要表现为湿H2S的腐蚀。若湿H2S与酸性介质共存时,腐蚀速率会大幅提高。

1. 腐蚀分类在氢存在环境操作的设备中,由于氢的存在或氢与金属反应造成的材质失效主要有以下几大类:氢损伤、氢和湿硫化氢腐蚀、高温氢和硫化氢的腐蚀、不锈钢堆焊层的氢致剥离[1]。 1.1氢损伤

氢损伤是指金属中由于含有氢或金属中的某些成分与氢反应,从而使金属材料的力学性能发生改变的现象[1]。氢损伤导致金属或金属材料的韧性和塑性降低,易使材料开裂或脆断。电镀、酸洗、潮湿环境下的焊接、高温临氢环境(加氢反应、氮氢气合成氨的反应)、非高温临氢环境(含硫化氢和氰化物的溶液)均能引起不同性质的氢损伤。氢损伤的形式主要有氢脆、氢鼓泡、氢腐蚀、表面脱碳4种不同类型。 1.1.1氢脆氢脆发生在钢材中,当钢中氢的质量分数为0.1-10μg/g,并在拉应力与慢速应变时钢材表现出脆性上升,甚至

出现裂纹。在-100~100℃内极易发生氢脆[2],随着温度升高,氢脆效应下降,当温度超过71-82℃时不太容易发生,所以实际氢脆损伤往往都是发生在装置开、停工过程的低温阶段。若将钢材中的氢释放出来,钢材机械性能仍可恢复,因此氢脆是可逆的。

1.1.2氢鼓泡氢鼓泡形成的两个主要条件:一是存在原子状态的氢;二是金属内部存在“空穴”。原子状态的氢来源于湿H2S对石油管道钢材表面的腐蚀,而钢材内部的“空穴”则来源于钢材的冶金缺陷和制造缺陷。腐蚀过程中析出的氢原子向钢中扩散,在钢材的非金属夹杂物、分层和其他不连续处易聚集形成分子氢。由于氢分子较大,难以从钢的组织内部逸出,从而形成巨大内压导致其周围组织屈服,形成表面层下的平面孔穴结构造成氢鼓泡,其分布平行于钢板表面。氢鼓泡的产生无需外加应力,与材料中的夹杂物缺陷密切相关。 1.1.3 氢腐蚀氢腐蚀则是在高温(205-595℃)下发生的,主要是在高温下氢原子渗入钢内与碳化合成甲烷,引起钢材的内部脱碳,温度降低后也会使钢材表面发生鼓泡。

即:2H2+Fe3C----3Fe+CH4C+2H2-----CH4或C+4H----CH4生成甲烷的化学反应在晶界上进行,它在钢中的扩散能力很小,没有能力从钢材中扩散出去,在钢材缺陷部位聚集,在孔穴处生长且连接起来,形成局部高压,造成应力集中,导致微观孔隙发展,以至形成内部裂纹使钢材强度和延性显著

降低,最后导致材料破裂。氢腐蚀是非可逆的,是永久性脆化。Cr和Mo的质量分数分别高于2.25%和0.5%-1.0%的合金钢一般不会氢腐蚀,但可能出现表面脱碳。钢材的氢腐蚀不是突然发生的,要经过一段孕育期,在此期间内钢材的机械性能并无明显变化。孕育期的长短与钢材的化学成分、组织状态、操作温度、氢分压及冷变形程度有关。

1.2氢和湿硫化氢腐蚀氢和湿硫化氢对碳钢设备的腐蚀,随温度的升高而加剧,在温度80℃时腐蚀速率最高,在110-120℃时腐蚀速率最低。另外,在开工后的最初几天腐蚀速率可达10 mm/a以上,随着时间的增长而迅速下降,到1500-2000 h后,其腐蚀速率趋于0.3 mm/a。其反应过程为:H2S-----H++HS-阳极反应

Fe----Fe2++2eFe2++HS----FeS+H+或Fe2++S2----FeS 阴极反应2H++2e---2H----H2硫化氢在水溶液中电离出氢离子,从钢材表面得到电子后还原成氢原子。氢原子之间有较大的亲和力,易结合形成氢分子排出。然而,介质中的硫化物等消弱这种亲和力,部分抑制了氢分子的形成,原子半径极小的氢原子很容易渗入钢材内部并溶入晶格中。固溶于晶格中的氢导致材料的脆化和氢损伤。湿H2S环境除了均匀腐蚀外,更重要的是引起一系列与钢材渗氢有关的腐蚀开裂。湿H2S环境中的开裂有氢鼓泡( HB )、氢致开裂(HIC )、硫化物应力腐蚀开裂(SSCC)、应力导向氢致开裂(SOHIC) 4种形式。