最新《义务教育数学课程标准(2011年版)》 下载本文

内容发布更新时间 : 2024/11/14 14:35:51星期一 下面是文章的全部内容请认真阅读。

例28 利用计算器计算15×15,25×25,…,95×95,并探索规律。

[说明] 目的是运用计算器进行计算,从中发现一些有趣的规律。学生可以通过观察结果与乘数的关系,发现规律。例如

15×15=225=1×2×100+25, 25×25=625=2×3×100+25, 35×35=1225=3×4×100+25,

等等。这个规律在实际运算中也是有用的。

例29 彩带每米售价3.2元,购买2米,3米,……,10米彩带分别需要多少钱?在方格纸上把与数对(长度,价钱)相对应的点描出,并且回答下列问题:

(1)所描的点是否在一条直线上?

(2)估计一下,买1.5米的彩带大约要花多少元?

(3)小刚买的彩带长度是小红的3倍,他所花的钱是小红的几倍?

[说明]希望学生感受成正比例关系的一组数对所对应的点在一条直线上,并且能够借助图形进行数据的估计。 教学中引导学生在描点之前,先建立下面的表格,有利于直观地理解正比例关系,并为描点作准备。

长度/米 0 1 2 3 4 5 6 7 … 价钱/元 0 3.2 6.4 9.6 12.8 16 19.2 22.4 …

例30 联欢会上,小明按照3个红气球、2个黄气球、1个绿气球的顺序把气球串起来装饰教室。你知道第16个气球是什么颜色吗?

[说明]希望学生能够通过所给条件,发现规律,进一步了解规律可以借助各种符号表示(参见例9)。 在解决这个问题时,学生可以有多种方法。例如,用A表示红气球,B表示黄气球,C表示绿气球,则按照题意气球的排列顺序可以写成

AAABBCAAABBC…

46

从中找出第16个字母,由此推出第16个气球的颜色。

例31 一个房间里有四条腿的椅子和三条腿的凳子共16个,如果椅子腿数和凳子腿数加起来共有60条,那么有几个椅子和几个凳子?

[说明] 可以引导学生运用尝试的办法探索规律,得出结果,使学生感受这是数学探索的一种有效途径。比如,可以有规律地给出下面的计算过程:

椅子数/个 凳子数/个 腿的总数/条 16 0 4×16=64 15 1 4×15+3×1=63 14 2 4×14+3×2=62

继续计算下去,可以得到椅子数12,凳子数4时,腿数恰好为60。通过上表可以启发学生思考:每减少一个椅子就要增加一个凳子,腿的总数就要减少4-3=1。腿的总数为60时,需要减少的椅子数是64-60=4,于是椅子数是16-4=12,凳子数是0+4=4。最后验证一下:12×4+3×4=60,是正确的。当然,也可以从凳子数的变化思考:每减少一个凳子就要增加一个椅子,腿的总数就要增加4-3=1。

对于学有余力的学生,教师可以鼓励他们讨论“鸡兔同笼”问题,还可以进一步用字母代替椅子数与凳子数,得到计算腿的总数的模型。

图形与几何

例32 观察图8。

图8

请在图9中指出从前面、右面、上面看到的相应图形:

47

( ) ( ) ( )

图9

[说明]可以为学生提供实物,让学生进行实际观察。观察之前也可以先说一说自己的想法,再实际验证。

例33 图10中每个小方格为1个平方单位,试估计曲线所围图形的面积。

图10

[说明] 要帮助学生养成事先做好规划的习惯,可以运用不同的方法估计图形的面积,例如: 方法1,可以数出图形内包含的完整小正方形数,估计这个图形的面积。

方法2,在上面的基础上,再加上图形边缘接触到的所有小正方形数,估计这个图形的面积。

可以引导学生发现,第一种方法估计的比实际面积小,第二种方法估计的比实际面积大。实际面积应在这两个估计值之间。

在此基础上还可以引导学生用自己的方法进行估计,学生通过记录、计算、比较等,体会估计的意义和方法。 对于学有余力的学生,可以引导他们将所有的小正方形分成更小的正方形,探索更接近实际面积的估计值。

例34 测量一个土豆的体积。

[说明] 对于不规则物体的体积的测量问题,可以转化为等体积的规则物体来测量。例如,准备一个有刻度的容器,先注入一些水,然后把土豆放入水中,观察水面高度上升的情况。类似地,可以利用学生熟悉的“曹冲称象”的故事,让学生体会等量替换的思想方法。

48

例35 图画还原。

打乱由几块积木或者几幅图画构成的平面画面,请学生还原并利用平移和旋转记录还原步骤。

[说明]通过实际操作进一步理解平移和旋转,不仅能增加问题的趣味性,还可以让学生感悟几何运动也是可以记录的,体验选取最佳方案的过程。

教学设计时,可关注如下要点:

(1)完成还原积木的任务一定要从简单到复杂,如图11,先打乱四块积木中的下面两块,让学生尝试思考的过程。学生有了一定经验后,可以打乱三块或四块积木,让学生继续尝试。

图11

(2)可以分小组进行。为了记录准确,事先要确定每一个步骤的代表符号。 (3)小组活动时,可以先讨论,确定一个大概的还原路线,然后操作验证。 (4)小组成员共同操作,进行比较,验证确定的路线。

例36 描述从学校到家的路线示意图,并注明方向及途中的主要参照物。

[说明] 学生可以用语言描述路线,为了交流的方便,学生也可以借助实物模拟路线。教师还可以进一步鼓励学生画出路线的简单示意图,并在图中标明方向及主要参照物。

例37 小青坐在教室的第3行第4列,请用数对表示,并在方格纸上描出来。在同样的规则下,小明坐在教室的第1行第3列应当怎样表示?

49

[说明] 需要先在方格纸上标明正整数刻度,希望学生能够把握数对与方格纸上点(行列或者列行)的对应关系,并且知道不同的数对之间可以进行比较。这个过程有利于学生将来直观理解直角坐标系。

统计与概率

例38 对全班同学的身高的数据进行整理和分析。

[说明] 在例19中,已经引导学生对全班同学的身高的数据进行初步分析。在这个学段中,要求学生结合以前积累的身高数据(参见例19的说明),进行进一步的整理,然后进行分析。整理的目的是为了便于分析,例如,条形统计图有利于直观了解不同高度的学生数及其差异;扇形统计图有利于直观了解不同高度的学生占全班学生的比例及其差异;折线统计图有利于直观了解几年来学生身高变化的情况,预测未来身高变化趋势。学生还可以讨论用什么数据来代表全班同学的身高,自己的身高在全班的什么位置。

教学设计时,可以关注如下要点:

(1)组织学生讨论并明确做统计图的基本标准。如果学生意见不一致,可以根据意见的不同把学生分组,各自画出统计图后进行比较。

(2)可以把几年来全班同学平均身高的数据画出折线统计图,让学生与自己身高数据的折线图进行分析比较。还可以对男女生的身高数据进行分析和比较。

(3)组织学生讨论用什么数据来代表全班同学的身高,自己的身高在全班的什么位置。学生可以用平均身高作为代表,用自己的身高与平均身高进行比较;可以用出现次数最多的身高作为代表(“众数”的意义),用自己的身高与其相比;也可以用班级中等水平学生的身高作为代表(“中位数”的意义),用自己的身高与其相比。学生只要能说出自己的理由就可以,不需要出现“众数”“中位数”等名词(只要求教师理解,不要求给学生讲解)。

(4)虽然数据整理和分析的方法可以有所不同,但要求分析的结论清晰,能够更好地反映实际背景。

例39 阅读在报纸或者杂志上发表的有统计图的文章,用自己的语言说明统计图所表达的意思。

[说明] 在实际背景中体会统计图的作用,可以增强趣味性,加深对统计图及其所表示的问题的理解。此外,还可以培养学生调查研究的习惯。

教学时,教师可以事先布置作业,也可以确定题目分小组查阅资料,小组讨论后再课堂分小组交流。在此基础上,还可以调查周边的事情(如喜欢读的书籍,喜欢听的歌曲,等等),得到数据并作出统计图进行分析。

例40袋中装有4个红球和1个白球。只告诉学生袋中球的颜色为红色和白色,不告诉他们红球数目与白球数目,让学生通过多次有放回的摸球,统计摸出红球和白球的数量及各自所占比例,由此估计袋中红球和白球数目的情况。

[说明] 借助学生感兴趣的摸球游戏,使学生体会到数据的随机性。一方面,每次摸出的球的颜色可能是不一样的,事先无法确定;另一方面,有放回重复摸多次(摸完后将球放回袋中,摇晃均匀后再摸),就能发现一些规律。根据学生的不同学段,可以设计如下层次:

50