最新《义务教育数学课程标准(2011年版)》 下载本文

内容发布更新时间 : 2024/11/14 14:39:59星期一 下面是文章的全部内容请认真阅读。

经历:在特定的数学活动中,获得一些感性认识。

体验:参与特定的数学活动,主动认识或验证对象的特征,获得一些经验。

探索:独立或与他人合作参与特定的数学活动,理解或提出问题,寻求解决问题的思路,发现对象的特征及其与相关对象的区别和联系,获得一定的理性认识。

[说明] 在本标准中,使用了一些词,表述与上述行为动词同等水平的要求程度。这些词与上述行为动词之间的关系如下。

(1)了解

同类词:知道,初步认识。

实例:知道三角形的内心和外心;能结合具体情境初步认识小数和分数。 (2)理解

同类词:认识,会。

实例:认识三角形;会用长方形、正方形、三角形、平行四边形或圆拼图。 (3)掌握 同类词:能。

实例:能认、读、写万以内的数,能用数表示物体的个数或事物的顺序和位置。 (4)运用 同类词:证明。

实例:证明定理:两角分别相等且其中一组等角的对边相等的两个三角形全等。 (5)经历

同类词:感受,尝试。

实例:在生活情境中感受大数的意义;尝试发现和提出问题。 (6)体验 同类词:体会。

实例:结合具体情境,体会整数四则运算的意义。 附录2 内容标准及实施建议中的实例 第一学段(1~3年级) 数与代数

例1用算盘上的算珠表示三位数。

[说明] 算盘是中国的重大发明,体现了十进位值制计数法。算盘最大的特点是:一颗下珠表示1,一颗上珠表示5。使用算盘要注意以下两点:

36

(1)先确定个位。先任意选定某个档为个位,然后依次左进为十位、百位、千位等。

(2)再用算珠表示数。个位上的几表示几个,十位上的几表示几十,……某个数位上是0,则以不拨珠空档表示。

如513,在算盘上就是

百十个 位位位 更大的数可用同样的方法表示。

例2 将数50,98,38,10,51排序,用“>”或“<”表示。用大得多、大一些、小一些、小得多等语言进一步描述它们之间的关系。

[说明] 符号“>”或“<”表述的是数量间的大小关系,希望学生能够理解符号的含义并能合理使用,这个过程可以帮助学生建立数感。

让学生将这些数排序,学生可能会有不同的排序方法。例如,先找到最小(大)的,然后在剩余的数中再找到最小(大)的,依次将五个数按从小(大)到大(小)的顺序进行排序;或者先固定一个数(如50),拿第二个数(98)与之比较,然后取第三个数与前两个数比较,根据它们之间的大小关系决定位置,这样继续下去,最后将五个数排序。无论学生的出发点如何,只要思路清晰、排序正确即可。

用语言描述几个数之间的大小关系时,结论是相对的。例如,可以说51比50大一些,98比10大很多;而50比38是大一些,还是大得多,可能会有不同看法,但不应当出现逻辑上的混乱,例如,“50比10大一些,50比38大得多”。

例3 1200张纸大约有多厚?你的1 200步大约有多长?1 200名学生站成做广播操的队形需要多大的场地? [说明]通过对1 200在不同情境中的意义的了解,感受数与生活实际的关系。上述三个问题是类似的,可以让学生学会举一反三。

针对问题“1 200张纸大约有多厚”,教学中可以作如下设计:

(1)一本数学教科书大约由50张纸装订而成。可以请学生先观察自己的教科书,感受一本书的厚度。 (2)将10本教科书依次叠在一起,每增加一本都请学生感受一次纸张的数量,感受数量由小增大的过程,建立大数的表象。

37

(3)想一想,1 200张纸大约有多厚?(如果10本书是500张纸,学生可以想象20本书是1000张纸,1 200张纸比20本书还要厚)请学生描述“这1200张纸叠在一起有多高”,鼓励学生从不同的角度进行描述。

例4 说出与日常生活密切相关的数及其表达的事物。

[说明] 对小学生来讲,日常生活中用数来表示的例子很多,如学号、班级人数、身高、物价、重量、距离等。教学中要引导学生自己去发现,相互交流,从而体会数的意义和作用。

例5 教室里有6行座位,每行7个,教室里一共有多少个座位?

[说明] 这个例子可以引导学生理解教室中的座位数是6个7的和,可以写成:6×7或7×6。

例6 学校组织987名学生去公园游玩。如果公园的门票每张8元,带8 000元钱够不够?

[说明] 本例的目的是希望学生了解在什么样的情境中需要估算。能结合具体情境,选择适当的单位是第一学段估算的核心。比如,在此例中适当的方法是把987人看成1 000人,所以适当的单位是“1 000人”。

一般来说,估计教室的长度时,通常以“米”为单位;估计书本的长度时,通常以“厘米”为单位。也可以用身边熟悉的物体的长度为单位,如步长、臂长等。

例7 每条小船限乘4人,18人至少需要租几条船?你认为怎样分配才合适?

例8 估计每分钟脉搏跳动的次数、阅读的字数、跳绳的次数、走路的步数。

[说明] 本例既可以帮助学生体验1分的长短,又是一个估计问题,需要实际测量,在测量的基础上进行简单计算。

可以有三类方法进行实际测量:测量半分钟,然后用测得的数据乘2;测量1分;测量2分,然后用测得的数据除以2。对于学有余力的学生,可以引导他们感悟第一种方法省事,但可能不够准确;第三种方法费事,但可能更准确一些。帮助学生建立选择策略的思想。

例9 在下列横线上填上合适的数字、字母或图形,并说明理由。

1, 1, 2; 1, 1, 2; , , ; A, A, B; A, A, B; , , ;

, , ; , , ; , , ;

[说明] 启发学生探索规律。希望学生感悟:对于有规律性的事物,无论是用数字还是字母或图形都可以反映相同的规律,只是表达形式不同。

38

例10 在图1中,描出横排和竖排上两个数相加等于10 的格子,再分别描出相加等于6,9的格子,你能发现什么规律。

9 8 7 6 5 4 3 2 1 + 1 2 3 4 5 6 7 8 9 图1

[说明] 本例不仅能帮助学生熟练地进行20以内的加法,并且数值与图形结合,有利于学生以后学习坐标系、图像等。

根据学生的实际,借助上面的图1可以提出不同的问题。例如,进一步把两个数相加的和是8的格子描出来,看一看有什么规律。根据上图判断,出现次数最多的和是几?最少的是几?教师应根据自己学生的实际情况灵活地设计教学。如果学生在观察上图或者发现规律中有困难,教师可以引导学生从简单的情形入手,比如两个加数先限制在5以内。

图形与几何

例11 如图2,桌上放着一个茶壶,四位同学从各自的方向进行观察。

39

图2

请指出图3中四幅图分别是哪位同学看到的。

( ) ( ) (

) ( )

图3

例12 一米约相当于 根铅笔长;北京到南京的铁路长约1 000 。 [说明] 可以把问题举一反三,让学生了解实际情境中度量单位的意义,学会选择合适的度量单位,增加学生对测量单位的感知。

例13 测量并计算一张给定正方形纸的面积,利用结果估计课桌面的面积;测量步长,利用步长估计教室的面积。

[说明] 把测量与面积计算有机地结合,让学生体会面积的实际背景和估计长方形面积的方法。

例14 在下列现象中,哪些是平移现象?哪些是旋转现象? (1)汽车方向盘的转动; (2)火车车厢的直线运动; (3)电梯的上下移动; (4)钟摆的运动。

例15 图4中哪些图形通过平移可以互相重合?

40