铁磁材料的滞回线和基本磁化曲线实验报告 下载本文

内容发布更新时间 : 2024/12/28 11:44:54星期一 下面是文章的全部内容请认真阅读。

南昌大学物理实验报告

课程名称:普通物理实验(2)

实验名称:铁磁材料的磁滞回线和基本磁化曲线

学院:专业班级:

学生姓名:学号:

实验地点:座位号:

实验时间:

一、 实验目的:

1、掌握用磁滞回线测试仪测绘磁滞回线的方法。

2、了解铁磁材料的磁化规律,用示波器法观察磁滞回线比较两种典型铁磁物质的动态磁化特性。

3、测定样品的磁化特性曲线(B-H曲线),并作μ-H曲线。 4、测绘样品在给定条件下的磁滞回线,估算其磁滞损耗以及相关????、????、????、??、??的等参量。

二、 实验仪器:

TH—MHC型智能磁滞回线测试仪、示波器。

三、 实验原理:

1.铁磁材料的磁滞特性

铁磁物质是一种性能特异,用途广泛的材料。铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。其特性是在外磁场作用下能被强烈磁化,即磁导率μ很高。另一特征是磁滞,铁磁材料的磁滞现象是反复磁化过程中磁场强度H与磁感应强度B之间关系的特性。即磁场作用停止后,铁磁物质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁场强度H之间的关系曲线。 图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场强度H从零开始增加时,磁感应强度B随之从零缓慢上升,如曲线Oa,继之B随H迅速增长,如曲线ab所示,其后B的增长又趋缓慢,并当H增至HS时,B达到饱和值BS这个过程的OabS曲线称为起始磁化曲线。如果在达到饱和状态之后使磁场强度H减小,这时磁感应强度B的值也要减小。图1表明,当磁场从HS逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“O”点,而是沿另一条新的曲线SR下降,对应的B值比原先的值大,说明铁磁材料的磁化过程是不可逆的过程。比较线段OS和SR可知,H减小B相应也减小,但B的变化滞后于H的变化,这种现象称为磁滞。磁滞的明显特征是当H=O时,磁感应强度B值并不等于0,而是保留一定大小的剩磁Br。

当磁场反向从0逐渐变至-HD,磁感应强度B消失,说明要消除剩磁,可以施加反向磁场。HD称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,曲线RD称为退磁曲线。

图1还表明,当磁场按????→??→????→?????→??→????→????次序变化,相应的磁感应强度B则沿闭合曲线????????′??′??′??变化,可以看出磁感应强度B值的变化总是滞后于磁场强度H的变化,这条闭合曲线称为磁滞回线。当铁磁材料

处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。磁滞是铁磁材料的重要特性之一,研究铁磁材料的磁性就必须知道它的磁滞回线。各种不同铁磁材料有不同的磁滞回线,主要是磁滞回线的宽、窄不同和矫顽力大小不同。

当铁磁材料在交变磁场作用下反复磁化时将会发热,要消耗额外的能量,因为反复磁化时磁体内分子的状态不断改变,所以分子振动加剧,温度升高。使分子振动加剧的能量是产生磁场的交流电源供给的,并以热的形式从铁磁材料中释放,这种在反复磁化过程中能量的损耗称为磁滞损耗,理论和实践证明,磁滞损耗与磁滞回线所围面积成正比。

当初始状态为H=B=O的铁磁材料,在交变磁场强度由弱到强依次进行磁化,可以得到面积由小到大向外扩张的一簇磁滞回线,如图2所示,这些磁滞回线顶点的连线称为铁磁材料的基本磁化曲线。

图1 铁磁质起始磁化 曲线和磁滞回线

图2 同一铁磁材料的

一簇磁滞回线

可以说磁化曲线和磁滞回线是铁磁材料分类和选用的主要依据,图3为常见的两种典型的磁滞回线,其中软磁材料的磁滞回线狭长、矫顽力小(<102A/m)、剩磁和磁滞损耗均较小,磁滞特性不显著,可以近似地用它的起始磁化曲线来表示其磁化特性,这种材料容易磁化,也容易退磁,是制造变压器、继电器、电机、交流磁铁和各种高频电磁元件的主要材料。而硬磁材料的磁滞回线较宽,矫顽力大(>102A/m),剩磁强,磁滞回线所包围的面积肥大,磁滞特性显著,因此硬磁材料

图3 不同铁磁材料的磁滞回线

经磁化后仍能保留很强的剩磁,并且这种剩磁不易消除,可用来制造永磁体。