内容发布更新时间 : 2025/1/5 20:21:02星期一 下面是文章的全部内容请认真阅读。
.
第二章 极限与连续 §2.1 数列极限
3??23(2)lim?ln(2n?n?1)?2lnn?lnn2?;
n??3?? 1. 写出下列数列的通项,考察n??时通项的变化趋势,用极限的形式表示其结果:
n?1(1) sin?,sin2?,K,sinn?,K; (2) 11?1?2,?4,K,???2??,K
2. 求下列数列极限: (1)lim4n?n?2?n2?1n??n?3n?1;
Word 资料
3)设a?0,a?1,xn?na,n?1,2,K; 求limn??xn;n4)设0?q?1,xkn??q,n?1,2,K,求limk?1n??xn;
(
(
(5)x323n?n?3n?n,n?1,2,K; 求limn??xn;
(6)xn?n?n?1?n?1?,n?1,2,K; 求limn??xn;
(7)x3n?sin?n2?n?2n?cos?n2?,n?1,2,K; 求limn??xn.
13. 设ani?0,i?1,2,K,k,求limn???an?an12?K?ak?n;
4. 设x12nn?n2?1?n2?2?L?n2?n,求limn??xn;
5. 设x11n?n2?1?1n2?2?L?n2?n,求limn??xn;
§2.2 函数极限
1. 由函数y?e?x的图形考察极限?x?x?xxlim???e;xlim???e;xlim???e;
2. 由函数y?arctanx的图形考察极限xlim???arctanx;xlim???arctanx; limarctanx??x;
3. 求下列函数极限:
(1)lim2x?x4x2x????2?2?;
(3)22?xxlim?2?2?x?32?x;
2)lim3x2?7xx?02x3?3x2?5x;4)lim3x?6?3x?13x?1; (
(