内容发布更新时间 : 2024/11/9 9:54:07星期一 下面是文章的全部内容请认真阅读。
①当∠ABC=90°时,如图2,过点B作BE⊥x轴于点E,过点C作CF⊥EB交EB延长线于点F,过点C作CG⊥x轴于点G,则∠AEB=∠F=∠ABC=90°.
∴∠BCF+∠CBF=∠ABE+∠CBF=90°.∴∠BCF=∠ABE.∴△BCF∽△ABE. ∴
AEBEAB1===. BFCFBC2设AE=a,则BF=2a.∵BE=2,∴CF=2.
∵OG=OA+AE-GE=3+a-2=1+a,CG=EF=2+2a, ∴B(3+a,2),C(1+a,2+2a). ∵点B,C在函数y=
k(x>0)的图像上,∴2(3+a)=(1+a)(2+2a)=k. x解得:a1=1,a2=-2(舍去).
∴k=42. ················································································································· 9分 ②当∠BAC=90°时,如图3,过点C作CM⊥x轴于点M,过点B作BN⊥x轴于点N.则∠CMA=∠CAB=∠ANB=90°.
∴∠MCA+∠CAM=∠BAN+∠CAM=90°.∴∠MCA=∠BAN. 由(1)知∠B=45°.∴△ABC是等腰直角三角形.∴AC=AB. 由①知△MAC∽△NBA.∴△MAC≌△NBA(AAS).∴AM=BN=2. 设CM=AN=b,则ON=3+b.∴B(3+b,2),C(3-2,b). ∵点B,C在函数y=
k(x>0)的图像上,∴2(3+b)=(3-2)b=k. x解得:b=92+12.∴k=18+152. ······························································· 12分 综上所述,k=42或18+152.
127.解:(1)令y=x?2=0,得x=4,∴A(4,0).
2令x=0,得y=-2,∴B(0,-2).···································································· 2分 1∵二次函数y=?x2?bx?c的图像经过A、B两点,
2九年级数学试卷 第 11页(共 6页)
5???8?4b?c=0,?b=,∴?解得?2
c?2.?=??c=?2.15∴二次函数的关系式为y=?x2?x?2. ···························································· 4分
2215令y=?x2?x?2=0,解得x=1或x=4.∴C(1,0). ····························· 5分
22(2)∵PD∥x轴,PE∥y轴,∴∠PDE=∠OAB,∠PED=∠OBA. ∴△PDE∽△OAB.∴
PDOA4===2,∴PD=2PE. ······································· 7分 PEOB2151设P(m,?m2?m?2),则E(m,m?2).
22215133∴PD+PE=3PE=3×[(?m2?m?2)-(m?2)]=?m2?6m=?(m?2)2?6.
22222∵0<m<4,∴当m=2时,PD+PE有最大值6. ·············································· 10分 (3)当点M在在直线AB上方时,则点M在△ABC的外接圆上,如图1. ∵△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(55∴()2?(2?t)2=(?1)2?t2,解得t=2.
225,-t). 2∴圆心O1的坐标为(
55,-2).∴半径为. 2251∴点M的坐标为(,). ··············································································· 12分
22yy
图1
图2
九年级数学试卷 第 12页(共 6页)
COBMAxCO2DOBMO1AxO1
当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2. ∵AO1=O1B=
5,∴∠O1AB=∠O1BA.∵O1B∥x轴,∴∠O1BA=∠OAB. 23,0). 2∴∠O1AB=∠OAB,O2在x轴上.∴点O2的坐标为 (
521∴O2D=1,∴DM=()2?12=.
22∴点M的坐标为(
215,?). ········································································· 14分
2221515,)或(,?).
2222综上所述,点M的坐标为(
九年级数学试卷 第 13页(共 6
页)