最新版高等数学课后习题答案(复旦大学出版社)(李开复编) 下载本文

内容发布更新时间 : 2024/12/24 3:17:38星期一 下面是文章的全部内容请认真阅读。

limxex???x2e?x2xe?x2e?x?lim?lim?lim?x??1x??x??11xx2x3222,按照该方法计算下去越来越复杂.若将

它化为

?型,则简单得多. ?2x1解 lim?0. xe?x?limx2?lim2x??x??x??e2xexsinx例21 求极限lim. x?x?0分析 该极限属于00型,先化为xsixn?lime解 lim??x?0x?0sxinx?型,再用洛必达法则. ?lnx),而 1sinxln?limexp(?x?01lnxsin2xsinxsinxxlim?lim??lim??lim?lim?0. x?0?x?0??cosxx?0?xcosx1x?0?xx?0?cosxsinxsin2x故limxsinx?e0?1. ?x?0例22 求极限lim(x?e).

x???1xx分析 该极限属于?0型,先取对数(或者用恒等式elnx?x,x?0)将其转化为0??型,然后将其转化为

0?或型,再用洛必达法则. 0?x1x1解法1 设y?(x?e),lny?ln(x?ex)

xln(x?ex)1?exexlimlny?lim?lim?lim?1, x???x???x???x?exx???1?exx故lim(x?e)?ex???xx???1xlimlny?e1?e.

1xx解法2 lim(x?e)?limexp[ln(x?e)]

x???x???1xx1?exx1exxx?e?exp[limln(x?e)]?exp(lim)?exp(lim )?e.

x???xx???x???1?ex1

1sinx1?cos例23 求极限lim()x.

x?0x分析 该极限属于1?型,可把1?型变为e??ln1型.于是,问题归结于求??ln1型即0??型的极限;也可以用重要极限.

sinx)x11?cosx 解法1 lim(x?0xlnsinxlimx?0?e1?cosx,由于

sinxcosx1?lnsinx?lnxxsinxx lim?lim?lim2x?01?cosxx?0x?0xx2ln?lim?limxcosx?sinxxcosx?sinx ?limx?0x?0x2sinxx3?xsinx?sinx1. ?lim??2x?0x?03x3x311?sinx1?cosx故lim()?e3. x?0x解法2 利用重要极限lim(1?x)?e.

x?011sinx?x??sinx1?cossinx?xsinxxx?x1?cosxx.因为 lim()?lim(1?)x?0x?0xx1xlim1sinx?x1sinx?x??lim?

x?01?cosxx?01xx2x2?1x2cosx?11?lim?lim2??, x?0x?032323xx2211?sinx1?cosx故lim()?e3. x?0x注1 对于

0?或型可直接利用洛必达法则,对于00型,1?型,?0型,可以利用0?对数的性质将00型转化为e0?ln0型,将?0化e0?ln?型,将1?化为e??ln1型,于是问题就转化

0?为求0??型,然后将其化为或型,再用洛必达法则.

0?注2 用洛必达法则求极限时应当考虑与前面所讲的其它方法(如等价无穷小替换定理,重要极限等 )综合使用,这样将会简化计算.