【教育类标准】全日制义务教育数学课程标准修改说明 下载本文

内容发布更新时间 : 2025/1/5 12:12:39星期一 下面是文章的全部内容请认真阅读。

《全日制义务教育数学课程标准(修改稿)》修改说明

? 根据几年课程改革实验的经验和出现的问题,在深入调查、认真研讨和广泛征求意

见的基础上,数学课程标准修改组形成了的《标准》(修改稿)。标准(修改稿修改的主要内容包括以下几个方面。 1. 体例与结构做了适当调整

本次修改,在保持原课程标准基本结构不变的基础上,经充分讨论,在结构上有两处调整。

一是前言内容做了较大的调整。在前言重点阐述了《标准》的指导思想、意义与功能。明确了《标准》应以《义务教育法》和全面推进素质教育,培养创新型人才为依据。明确了《标准》的意义和功能。在前言中指出,“《标准》提出的数学课程理念和目标对义务教育阶段的数学课程与教学具有指导作用,所规定的课程目标和内容标准是义务教育阶段的每一个学生应当达到的基本要求。《标准》是教材编写、教学、评估和考试命题的依据。”

二是将课程目标中的关键术语的解释和所有比较完整的案例统一放在附录中,案例进行统一编号,便于查找和使用,同时减少了《标准》正文的篇幅。

2、修改和完善了数学课程的基本理念

《标准》提出的基本理念总体上反映了基础教育改革的方向,对个别表述的方式进行了修改。如将原来“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。

3、理清了《标准》的设计思路

《标准》中设计思路表述的不够清晰,修改稿对设计思路做了较大的修改。主要是对四个方面的课程内容“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”做了明确的阐

述。将“空间与图形”改为“图形与几何”。确立了“数感”、“符号意识”等七个义务教育阶段数学教育的关键词,并给出较清晰的描述。

4、对学生培养目标做了修改

学生的培养目标在具体表述上做了修改,提出了“四基”:基础知识、基本技能、基本思想和基本活动经验;提出了“两能”:发现问题和提出问题的能力、分析问题和解决问题的能力。

5、具体内容做了适当的修改,表述方式更加合理

对于三个学段的具体内容进行了适当调整。对“数与代数”,“图形与几何”的内容也做了一定的调整,增加了一些论证的要求;对“统计与概率”的内容进行了梳理,增强了三个学段内容的层次性;

为了削弱形式化,明确指出,几何证明不限于“综合证明法”。为了减轻学生的负担,修改中适当减少的一些知识点。如“图形与几何”中减少10个左右的知识点;在“数与代数”中删去了“一元不等式组的应用”等。具体修改情况如下:

? 数与代数

第一学段

1、增加“能进行简单的四则混合运算(两步) 第二学段

1、 增加“结合现实情境感受大数的意义,并能进行估计”。 2、 增加“了解公倍数和最小公倍数;了解公因数和最大公因数”。 3、 删除“会口算百以内一位数乘、除两位数。

4、 理解等式的性质,会用等式的性质解简单方程,改为“能解简单的方程(如3x+2=5,2x-x=3)。”

第三学段

1、明确几个概念: 算术平方根 最简二次根式

掌握合并同类项和去括号的法则, 2、增加几个具体的内容: 能解简单的三元一次方程组

能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等 了解一元二次方程的根与系数的关系(不要求应用这个关系解决其他问题) 知道给定不共线三点的坐标可以确定一个二次函数 3、 减少了部分内容 了解有效数字的概念。

能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题。 图形与几何

1、内容的结构的调整:

《标准(实验稿)》的“空间与图形”分为四个部分:

第一、二学段为(1)图形的认识;(2)测量;(3)图形与变换;(4)图形与位置。 第三学段为(1)图形的认识;(2)图形与变换;(3)图形与坐标;(4)图形与证明。

《标准(修改稿)》的“图形与几何”,第一、二学段仍分为四部分,具体表示有所变动,(1)图形的认识;(2)测量;(3)图形的运动;(4)图形与位置。

第三学段分为三个部分:(1)图形的性质;(2)图形的运动;(3)图形与坐标。