内容发布更新时间 : 2025/1/8 23:30:44星期一 下面是文章的全部内容请认真阅读。
11.3多边形及其内角和
专题一 根据正多边形的内角或外角求值 1.若一个正多边形的每个内角为150°,则这个正多边形的边数是( ) A.12 B.11 C.10 D.9 2.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.
3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.
专题二 求多个角的和
4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=( )
A.360° B.540° C.630° D.720°
5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.
6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.
1
状元笔记
【知识要点】
1.多边形及相关概念
多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 2.多边形的内角和与外角和
内角和:n边形的内角和等于(n-2)·180°. 外角和:多边形的外角和等于360°. 【温馨提示】 1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错. 2.多边形的外角和等于360°,而不是180°. 【方法技巧】
1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.
2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.
2
参考答案:
1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A. 2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.
3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.
4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,
∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.
5.360° 解析:在四边形BEFG中, ∵∠EBG=∠C+∠D, ∠BGF=∠A+∠ABC,
∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.
6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F. 同理:∠BPO=∠D+∠C.
∵∠A+∠B+∠BPO+∠POA=360°, ∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
3