中考数学考点及分值 下载本文

内容发布更新时间 : 2025/1/22 22:34:27星期一 下面是文章的全部内容请认真阅读。

学习必备 欢迎下载

考点七、点和圆的位置关系 (3分)

设⊙O的半径是r,点P到圆心O的距离为d,则有: dr?点P在⊙O外。

考点八、过三点的圆 (3分)

1、过三点的圆 不在同一直线上的三个点确定一个圆。

2、三角形的外接圆 经过三角形的三个顶点的圆叫做三角形的外接圆。

3、三角形的外心 三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

4、圆内接四边形性质(四点共圆的判定条件) 圆内接四边形对角互补。

考点九、反证法 (3分) 先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。

考点十、直线与圆的位置关系 (3~5分)

直线和圆有三种位置关系,具体如下:

(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线, (3)相离:直线和圆没有公共点时,叫做直线和圆相离。 如果⊙O的半径为r,圆心O到直线l的距离为d,那么: 直线l与⊙O相交?dr;

考点十一、切线的判定和性质 (3~8分) 1、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线。 2、切线的性质定理 圆的切线垂直于经过切点的半径。

考点十二、切线长定理 (3分)

1、切线长 在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。 2、切线长定理

从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

考点十三、三角形的内切圆 (3~8分)

1、三角形的内切圆 与三角形的各边都相切的圆叫做三角形的内切圆。

2、三角形的内心 三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。

考点十四、圆和圆的位置关系 (3分)

1、圆和圆的位置关系

如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。 如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。 如果两个圆有两个公共点,那么就说这两个圆相交。 2、圆心距 两圆圆心的距离叫做两圆的圆心距。 3、圆和圆位置关系的性质与判定

设两圆的半径分别为R和r,圆心距为d,那么 两圆外离?d>R+r 两圆外切?d=R+r

两圆相交?R-rr) 两圆内含?dr)

4、两圆相切、相交的重要性质 如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称

学习必备 欢迎下载

轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。

考点十五、正多边形和圆 (3分)

1、正多边形的定义 各边相等,各角也相等的多边形叫做正多边形。

2、正多边形和圆的关系 只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

考点十六、与正多边形有关的概念 (3分) 1、正多边形的中心 正多边形的外接圆的圆心叫做这个正多边形的中心。 2、正多边形的半径 正多边形的外接圆的半径叫做这个正多边形的半径。

3、正多边形的边心距 正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。 4、中心角 正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。

考点十七、正多边形的对称性 (3分)

1、 正多边形的轴对称性

正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。

2、正多边形的中心对称性 边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。 3、正多边形的画法 先用量角器或尺规等分圆,再做正多边形。

考点十八、弧长和扇形面积 (3~8分)

1、弧长公式 n°的圆心角所对的弧长l的计算公式为l?2、扇形面积公式S扇?n?r 180n1?R2?lR其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。 360213、圆锥的侧面积S?l?2?r??rl其中l是圆锥的母线长,r是圆锥的地面半径。

2补充:(此处为大纲要求外的知识,但对开发学生智力,改善学生数学思维模式有很大帮助) 1、相交弦定理 ⊙O中,弦AB与弦CD相交与点E,则AE?BE=CE?DE 2、弦切角定理 弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角。 弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角。 即:∠BAC=∠ADC 3、切割线定理 PA为⊙O切线,PBC为⊙O割线,则PA?PB?PC

2第十三章 图形的变换

考点一、平移 (3~5分)

1、定义 把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。 2、性质

(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动 (2)连接各组对应点的线段平行(或在同一直线上)且相等。

考点二、轴对称 (3~5分)

1、定义 把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。

2、性质(1)关于某条直线对称的两个图形是全等形。

学习必备 欢迎下载

(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。 3、判定

如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4、轴对称图形 把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

考点三、旋转 (3~8分)

1、定义 把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2、性质 (1)对应点到旋转中心的距离相等。(2)对应点与旋转中心所连线段的夹角等于旋转角。

考点四、中心对称 (3分)

1、定义 把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。 2、性质

(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 (3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。 3、判定

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。 4、中心对称图形

把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点五、坐标系中对称点的特征 (3分)

1、关于原点对称的点的特征

两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y) 2、关于x轴对称的点的特征

两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点 为P’(x,-y)

3、关于y轴对称的点的特征

两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点 为P’(-x,y)

第十四章 图形的相似

考点一、比例线段 (3分)

1、比例线段的相关概念

am如果选用同一长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的比是,或?写成a:b=m:n

bn在两条线段的比a:b中,a叫做比的前项,b叫做比的后项。

在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段, 简称比例线段

ac若四条a,b,c,d满足或a:b=c:d,那么a,b,c,d叫做组成比例的项,线段a,d叫做比例?外项,线段b,c叫做比例内项,线段的d叫做a,b,c的第四比例项。如果作为比例内项的是

bd两条相同的线段,即

2、比例的性质

ab?或a:b=b:c,那么线段b叫做线段a,c的比例中项。 bc学习必备 欢迎下载

(1)基本性质 ①a:b=c:d?ad=bc ②a:b=b:c?b?ac (2)更比性质(交换比例的内项或外项)

2ab?(交换内项) cdacdc?? ?(交换外项) bdbadb?(同时交换内项和外项) caacbd(3)反比性质(交换比的前项、后项):???

bdacaca?bc?d?(4)合比性质:??

bdbdacema?c?e???ma???(b?d?f???n?0)?? (5)等比性质:??bdfnb?d?f???nb 3、黄金分割

把线段AB分成两条线段AC,BC(AC>BC),并且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC=

5?1AB?0.618AB 2考点二、平行线分线段成比例定理 (3~5分)

三条平行线截两条直线,所得的对应线段成比例。 推论:(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

(2)平行于三角形一边且和其他两边相交的直线截得的三角形的三边与原三角形的三边对应成比例。

考点三、相似三角形 (3~8分)

1、相似三角形的概念

对应角相等,对应边成比例的三角形叫做相似三角形。相似用符号“∽”来表示,读作“相似于”。相似三角形对应边的比叫做相似比(或相似系数)。 2、相似三角形的基本定理

平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

用数学语言表述如下:

∵DE∥BC,∴△ADE∽△ABC 相似三角形的等价关系:

(1)反身性:对于任一△ABC,都有△ABC∽△ABC; (2)对称性:若△ABC∽△A’B’C’,则△A’B’C’∽△ABC

学习必备 欢迎下载

(3)传递性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,则△ABC∽△A’’B’’C’’。 3、三角形相似的判定

(1)三角形相似的判定方法

①定义法:对应角相等,对应边成比例的两个三角形相似

②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似 (2)直角三角形相似的判定方法 ①以上各种判定方法均适用

②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。 4、相似三角形的性质

(1)相似三角形的对应角相等,对应边成比例

(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比 (3)相似三角形周长的比等于相似比

(4)相似三角形面积的比等于相似比的平方。 5、相似多边形

(1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。相似多边形对应边的比叫做相似比(或相似系数) (2)相似多边形的性质

①相似多边形的对应角相等,对应边成比例

②相似多边形周长的比、对应对角线的比都等于相似比

③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比 ④相似多边形面积的比等于相似比的平方 6、位似图形

如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。

性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。 由一个图形得到它的位似图形的变换叫做位似变换。利用位似变换可以把一个图形放大或缩小。