表观遗传学和人类疾病 下载本文

内容发布更新时间 : 2025/1/6 15:16:55星期一 下面是文章的全部内容请认真阅读。

表观遗传学与人类疾病

张永彪, 褚嘉祐

(中国医学科学院 中国协和医科大学 医学生物学研究所 遗传室,昆明 650118)

GeneTex超过10年小鼠单克隆&杂交瘤技术, 国际领先的抗体生产线!快来申请多种抗体试用装>> >>

表观遗传是指DNA序列不发生变化但基因表达却发生了可遗传的改变。这种改变是细胞内除了遗传信息以外的其它可遗传物质发生的改变,即基因型未发生变化而表型却发生了改变,且这种改变在发育和细胞增殖过程中能稳定传递。表观遗传改变从以下3个层面上调控基因的表达,DNA修饰:DNA共价结合一个修饰基团,使具有相同序列的等位基因处于不同的修饰状态;蛋白修饰:通过对特殊蛋白修饰或改变蛋白的构象实现对基因表达的调控;非编码RNA的调控:RNA可通过某些机制实现对基因转录的调控以及对基因转录后的调控,如RNA干扰(RNA interference,RNAi)。表观遗传学研究包括染色质重塑、DNA甲基化、X染色体失活,非编码RNA调控4个方面,任何一方面的异常都将影响染色质结构和基因表达,导致复杂综合征、多因素疾病以及癌症。和DNA的改变所不同的是,许多表观遗传的改变是可逆的,这就为疾病的治疗提供了乐观的前景。本文对表观遗传四个方面的研究进展以及表观遗传疾病的发病机制进行分析和总结。

1 染色质重塑与人类疾病

核小体结构的存在为染色质包装提供了便利,但DNA与组蛋白八聚体紧密结合却为基因的表达设置了障碍,要打破这一障碍获得有活性的染色质结构,可通过染色质重塑来实现。染色质重塑是指在能量驱动下核小体的置换或重新排列。它改变了核小体在基因启动子区的排列,增加了基础转录装置和启动子的可接近性。染色质重塑的发生和组蛋白N端尾巴修饰密切相关,尤其是对组蛋白H3和H4的修饰。修饰直接影响核小体的结构,并为其它蛋白提供了和DNA作用的结合位点。染色质重塑和组蛋白修饰均由各自特异的复合物来完成,两者发生的先后顺序与启动子序列的特异性有关;后与启动子结合的复合物有助于维持两个复合物与启动子的稳定结合,且两复合物又可相互加强对方的功能。染色质重塑复合物、组蛋白修饰酶的突变均和转录调控、DNA甲基化、DNA重组、细胞周期、DNA的复制和修复的异常相关,这些异常可以引起生长发育畸形,智力发育迟缓,甚至导致癌症。

1.1 ATP依赖的染色质重塑与人类疾病

染色质重塑复合物依靠水解ATP提供能量来完成染色质结构的改变,根据水解ATP的亚基不同,可将复合物分为SWI/SNF复合物、ISW复合物以及其它类型的复合物。这些复合物及相关的蛋白均与转录的激活和抑制、DNA的甲基化、DNA修复以及细胞周期相关。

ATRX、ERCC6、SMARCAL1均编码与SWI/SNF复合物相关的ATP酶。ATRX突变引起DNA甲基化异常导致数种遗传性的智力迟钝疾病如:X连锁α-地中海贫血综合征、Juberg-Marsidi综合征、Carpenter-Waziri综合征、Sutherland-Haan综合征和Smith-Fineman-Myers综合征,这些疾病与核小体重新定位的异常引起的基因表达抑制有关。ERCC6的突变将导致Cerebro-Oculo-Facio-Skeletal综合征和B型Cockayne综合征。前者表现为出生后发育异常、神经退行性变、进行性关节挛缩、夭折;后者表现出紫外线敏感、骨骼畸形、侏儒、神经退行性变等症状。这两种病对紫外诱导的DNA损伤缺乏修复能力,表明ERCC6蛋白在DNA修复中有重要的作用。SMARCAL1的突变导致Schimke免疫性骨质发育异常,表现为多向性T细胞免疫缺陷,临床症状表明SMARCAL1蛋白可能调控和细胞增殖相关的基因的表达。BRG1、SMARCB1和BRM编码SWI/SNF复合物特异的ATP酶,这些酶通过改变染色质的结构使成细胞纤维瘤蛋白(Retinoblastoma protein, RB蛋白)顺利的行使调节细胞周期、抑制生长发育以及维持基因失活状态的功能,这三个基因的突变可导致肿瘤形成。

1.2 组蛋白乙酰化、去乙酰化与人类疾病

组蛋白乙酰化与基因活化以及DNA复制相关,组蛋白的去乙酰化和基因的失活相关。乙酰化转移酶(HATs)主要是在组蛋白H3、H4的N端尾上的赖氨酸加上乙酰基,去乙酰化酶(HDACs)则相反,不同位置的修饰均需要特定的酶来完成。乙酰化酶家族可作为辅激活因子调控转录,调节细胞周期,参与DNA损伤修复,还可作为DNA结合蛋白。去乙酰化酶家族则和染色体易位、转录调控、基因沉默、细胞周期、细胞分化和增殖以及细胞凋亡相关。

CREB结合蛋白(CREB binding protein,CBP)、E1A结合蛋白p300(E1A binding protein p300,EP300)和锌指蛋白220(zinc finger 220,ZNF220)均为乙酰化转移酶。CBP是cAMP应答元件结合蛋白的辅激活蛋白,通过乙酰化组蛋白使和cAMP应答元件作用的启动子开始转录,它的突变导致Rubinstein Taybi综合征,患者智力低下、面部畸形、姆指和拇趾粗大、身材矮小。CBP和EP300均可抑制肿瘤的形成,在小鼠瘤细胞中确定了CBP的突变,在结肠和乳房瘤细胞系中确定了EP300的突变,另外ZNF220异常和人的急性进行性髓性白血病相关。

如果突变导致错误的激活去乙酰化酶或错误的和去乙酰化酶相互作用,将可能导致疾病的发生。甲基化CpG-结合蛋白-2(methyl cytosine binding protein-2,MeCP2)可募集去乙酰化酶到甲基化的DNA区域,使组蛋白去乙酰化导致染色质浓缩,MeCP2的突变导致Rett综合征,患者出生即发病、智力发育迟缓、伴孤独症。若阻碍去乙酰化酶的功能,则可

抑制癌细胞的增殖和分化,可用于急性早幼粒细胞性白血病, 急性淋巴细胞性白血病和非何杰金氏淋巴瘤的治疗。 染色质重塑异常引发的人类疾病是由于重塑复合物中的关键蛋白发生突变,导致染色质重塑失败,即核小体不能正确定位,并使修复DNA损伤的复合物,基础转录装置等不能接近DNA,从而影响基因的正常表达。如果突变导致抑癌基因或调节细胞周期的蛋白出现异常将导致癌症的发生。乙酰化酶的突变导致正常基因不能表达,去乙酰化酶的突变或一些和去乙酰化酶相关的蛋白的突变使去乙酰化酶错误募集将引发肿瘤等疾病。

2 基因组印记与人类疾病

基因组印记是指来自父方和母方的等位基因在通过精子和卵子传递给子代时发生了修饰,使带有亲代印记的等位基因具有不同的表达特性,这种修饰常为DNA甲基化修饰,也包括组蛋白乙酰化、甲基化等修饰。在生殖细胞形成早期,来自父方和母方的印记将全部被消除,父方等位基因在精母细胞形成精子时产生新的甲基化模式,但在受精时这种甲基化模式还将发生改变;母方等位基因甲基化模式在卵子发生时形成,因此在受精前来自父方和母方的等位基因具有不同的甲基化模式。目前发现的印记基因大约80%成簇,这些成簇的基因被位于同一条链上的顺式作用位点所调控,该位点被称做印记中心(imprinting center, IC)。印记基因的存在反映了性别的竞争,从目前发现的印记基因来看,父方对胚胎的贡献是加速其发育,而母方则是限制胚胎发育速度,亲代通过印记基因来影响其下一代,使它们具有性别行为特异性以保证本方基因在遗传中的优势。

印记基因的异常表达引发伴有复杂突变和表型缺陷的多种人类疾病。研究发现许多印记基因对胚胎和胎儿出生后的生长发育有重要的调节作用,对行为和大脑的功能也有很大的影响,印记基因的异常同样可诱发癌症。

2.1 基因组印记与脐疝-巨舌-巨人症综合征(BWS )

BWS患者表现为胚胎和胎盘过度增生,巨舌,巨大发育,儿童期易发生肿瘤。该病主要是由11号染色体上的IGF2和CDKN1C两个印记基因的错误表达引发,IGF2为父本表达的等位基因,CDKN1C为母本表达的等位基因。父本单亲二体型(uniparental disomies, UPDs)是引发BWS的主要原因,即IGF2基因双倍表达,CDKN1C基因不表达;次要原因是母本的CDKN1C等位基因发生突变[22];极少数病例是由于母本的染色体发生移位造成CDKN1C基因失活和(或)造成母本的IGF2基因表达。其它一些印记基因在胚胎发育过程中的过量或缺失表达也可导致类似于BWS的综合征,如原来母本表达的IPL基因的不表达或母本的ASCL2基因逃避印记都将导致胚胎的过度发育。这表明父本表达的等位基因对胚胎的生长有促进作用,而母本表达的等位基因对胚胎的发育起到限制作用。