离散数学期末总结 下载本文

内容发布更新时间 : 2024/11/5 13:38:55星期一 下面是文章的全部内容请认真阅读。

离散数学期末总结

离散数学期末总结

离散数学是描绘一些离散量与量之间的相互逻辑结构及关系的学科。它的思想方法及内容渗透到计算机学科的各个领域中。因此它成为计算机及相关专业的一门重要专业基础课。主要内容包括:集合论、关系、代数系统、图论和数理逻辑五个部分。结构上,从集合论入手,后介绍数理逻辑,便于学生学习。为了能很好的消化理解内容,列举了大量的较为典型、易于接受、说明问题的例题,配备了相当数量的习题,也列举了部分实际应用问题。 一. 知识点 第一章.集合论

集合论或集论是研究集合的数学理论,包含集合、元素和成员关系等最基本数学概念。在大多数现代数学的公式化中,集合论提供了要如何描述数学物件的语言。

本章主要介绍集合的基本概念、运算及幂集合和笛卡尔乘积。这章是本书的基础部分,要学好离散数学就必须很好的掌握集合的内容。集合论的概念和方法已经渗透到所有的数学分支,因而各数学分支的完整体系,都是在所取集合上。 第二章.关系

关系在我们日常生活中经常会遇到关系这一概念。但在数学中关系表示集合中元素间的联系。本章主要学习关系的

基本概念、关系的性质、闭包运算、次序关系、等价关系,本章学习的重点:关系的性质、闭包运算、次序关系。 关系这一章是集合论这一章的延伸,对集合论的理解程度对学习关系这一章是非常有影响的。而关系又是学习下一章代数系统必不可少的,所以本章是非常重要的章节。 第三章.代数系统

代数结构也叫做抽象代数,主要研究抽象的代数系统。抽象代数研究的中

心问题就是一种很重要的数学结构--代数系统:半群、群等等。

本章主要学习了运算与半群、群。学习本章需要学会判断是否是代数系统、群和半群,以及判断代数系统具有哪些运算规律,如:结合、交换律等及单位元、逆元。这些都在我们计算机编码中体现出重要的作用。 第四章.图论

图论〔Graph Theory〕起源于著名的柯尼斯堡七桥问题,以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。

本章主要学习图的基本概念、路径与回路、图的矩阵表示、平面图和二部图、以及树。学习的重点:图的矩阵表示、

平面图和二部图、以及树。 第五章.数理逻辑

数理逻辑又称符号逻辑、理论逻辑。它既是数学的一个分支,也是逻辑学的一个分支。是用数学方法研究逻辑或形式逻辑。数理逻辑是数学基础的一个不可缺少的组成部分。虽然名称中有逻辑两字,但并不属于单纯逻辑学范畴。 数理逻辑与计算机科学有着密切的关系,它已成为计算机科学的基础理论。

本章学习的重点:命题及联结词、命题公式及公式的等值和蕴含关系、对偶与范式、命题演算的推理规则、谓词逻辑简介。

二.学习情况

离散数学作为一门必修课,其地位是非常重要的。学习好这门课对于我们也是颇有益处。而且离散数学还是一门有很深内涵的学科。

集合论是本书的这一章节,我们在以前已经学习过集合,为什么现在还要学习呢,这就足见集合在离散数学这门课程中的重要,把集合的知识作为一个基础的知识点,来作铺垫。所以说要想学习好离散数学就必须先将集合的知识掌握好。 关系是集合知识点的延伸,关系是相对于集合而言的。关系也是一个重要的知识点,对后续知识的学习也有重要的作用。后面的代数系统就必须依赖关系才存在的。如果一个