内容发布更新时间 : 2025/1/24 6:27:55星期一 下面是文章的全部内容请认真阅读。
力的合成和分解
1.力的合成
(1)力的合成的本质就在于保证作用效果相同的前提下,用一个力的作用代替几个力的作用,这个力就是那几个力的“等效力”(合力)。力的平行四边形定则是运用“等效”观点,通过实验总结出来的共点力的合成法则,它给出了寻求这种“等效代换”所遵循的规律。
(2)平行四边形定则可简化成三角形定则。由三角形定则还可以得到一个有用的推论:如果n个力首尾相接组成一个封闭多边形,则这n个力的合力为零。
(3)共点的两个力合力的大小范围是 |F1-F2| ≤ F合≤ F1+F2
(4)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零。
【例1】物体受到互相垂直的两个力F1、F2的作用,若两力大小分别为53N、5 N,求这两个力的合力.
解析:根据平行四边形定则作出平行四边形,如图所示,由于F1、F2相互垂直,所以作出的平行四边形为矩形,对角线分成的两个三角形为直角三角形,由勾股定理得:
O F1 F O F F1
F2
F2 F?F1?F2?(53)2?52N=10 N
合力的方向与F1的夹角θ为:
22tg??F253 θ=30° ??F1533【例2】如图甲所示,物体受到大小相等的两个拉力的作用,每个拉力均为200 N,两力之间的夹角为60°,求这两个拉力的合力.
解析:根据平行四边形定则,作出示意图乙,它是一个菱形,我们可以利用其对角线垂直平分,通过解其中的直角三角形求合力.
F?2F1cos30??2003N=346 N
合力与F1、F2的夹角均为30°. 2.力的分解
(1)力的分解遵循平行四边形法则,力的分解相当于已知对角线求邻边。
(2)两个力的合力惟一确定,一个力的两个分力在无附加条件时,从理论上讲可分解为无数组分力,但在具体问题中,应根据力实际产生的效果来分解。
【例3】将放在斜面上质量为m的物体的重力mg分解为下滑力F1和对斜面的压力F2,这种说法正确吗?
解析:将mg分解为下滑力F1这种说法是正确的,但是mg的另一个分力F2不是物体对斜面的压力,而是使物体压紧斜面的力,从力的性质上看,F2是属于重力的分力,而物体对斜面的压力属于弹力,所以这种说法不正确。
【例4】将一个力分解为两个互相垂直的力,有几种分法?
解析:有无数种分法,只要在表示这个力的有向线段的一段任意画一条直线,在有向线段的另一端向这条直线做垂线,就是一种方法。如图所示。
(3
①已知两个分力的方向,求两个分力的大小时,有唯一解。
②已知一个分力的大小和方向,求另一个分力的大小和方向时,有唯一解。 ③已知两个分力的大小,求两个分力的方向时,其分解不惟一。
④已知一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能惟一,也可能不惟一。
(4)用力的矢量三角形定则分析力最小值的规律:
①当已知合力F的大小、方向及一个分力F1的方向时,另一个分力F2取最小值的条件是两分力垂直。如图所示,F2的最小值为:F2min=F sinα
②当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2取最小值的条件是:所求分力F2与合力F垂直,如图所示,F2的最小值为:F2min=F1sinα
③当已知合力F的大小及一个分力F1的大小时,另一个分力F2取最小值的条件是:已知大小的分力F1与合力F同方向,F2的最小值为|F-F1|
(5
把一个力分解成两个互相垂直的分力,这种分解方法称为正交分解法。 用正交分解法求合力的步骤:
①首先建立平面直角坐标系,并确定正方向
②把各个力向x轴、y轴上投影,但应注意的是:与确定的正方向相同的力为正,与确定的正方向相反的为负,这样,就用正、负号表示了被正交分解的力的分力的方向
③求在x轴上的各分力的代数和Fx合和在y轴上的各分力的代数和Fy合 ④求合力的大小 F?(Fx合)2?(Fy合)2
合力的方向:tanα=
Fy合Fx合(α为合力F与x轴的夹角)
【例5】质量为m的木块在推力F作用下,在水平地面上做匀速运动.已知木块与地面间的动摩擦因数为μ,那么木块受到的滑动摩擦力为下列各值的哪个? A.μmg B.μ(mg+Fsinθ)
C.μ(mg+Fsinθ) D.Fcosθ
解析:木块匀速运动时受到四个力的作用:重力mg、推力F、支持力FN、摩擦力Fμ.沿水平方向建立x轴,将F进行正交分解如图(这样建立坐标系只需分解F),由于木块做匀速直线运动,所以,在x轴上,向左的力等于向右的力(水平方向二力平衡);在y轴上向上的力等于向下的力(竖直方向二力平衡).即
Fcosθ=Fμ ① FN=mg+Fsinθ ② 又由于Fμ=μFN ③
∴Fμ=μ(mg+Fsinθ) 故B、D答案是正确的.
小结:(1)在分析同一个问题时,合矢量和分矢量不能同时使用。也就是说,在分析问题时,考虑了合矢量就不能再考虑分矢量;考虑了分矢量就不能再考虑合矢量。