沪科版七年级数学下册知识点总结大全 下载本文

内容发布更新时间 : 2024/11/15 15:38:50星期一 下面是文章的全部内容请认真阅读。

沪科版七年级数学下册知识点

数学是一门研究数量、结构、变化以及空间模型等概念的学科; 数学解题的关键就是知识和方法;

知识是锁眼,方法是钥匙。缺少哪个都不能打开题目这把锁; 那么我们的数学学习也要针对这两点进行。

一、掌握课本知识内容及内涵

数学知识是数学解题的基石。只有掌握了课本知识的内容,理解知识的内涵,才能更好地运用它来解决问题。

二、多看例题

数学有的概念、定理较抽象,我们可以通过例题,将已有的概念具体化,使

自己对知识的理解更加深刻,更加透彻!看例题时,还要注意以下几点:

1、看一道例题,解决一类问题。不能只看皮毛,不看内涵。我们看例题,要注意总结并掌握其解题方法,建立起更宽的解题思路。不能看一道题就只会一道题,只记题目答案不记方法,这样看例题也就失去了它本来的意义。每看一道题目,就应理清解题思路,掌握解题方法,再遇到同类型的题目,我们就不在难了。既然有“授人以鱼,不如授人以渔”,那么我们是不是也可以说“要鱼不如要渔”呢!

2、我们不仅要看例题还要会总结,总结题型、解题思路和方法。运用了哪些数学思想。最好把总结的写出来。以后复习时再看,就事半功倍了。

3、会模仿,也要创新。在看例题的解题时,首先想自己遇到这个题怎么做,然后看例题怎么解答的,之后我们还要思考还有没有其它方法和思路。我们最后看哪种方法更简便。

三、多做练习

“多”讲的是题型多,不是题目数量多。不怕难题,就怕生题。题海战术不

一定好,但是接触的题型多了,总结的解题方法多了。以后遇到相同类型的题目也就不怕了。

四、心细,多思,善问,勤总结

数学是严谨的,做题目时要细心,一个符号之差,题目的解就可能完全不一样了,遇到问题要多思考,培养自己的数学思维,思考实在不会的,我们就要问,去弄懂。

在数学学习过程中,我们要会总结,还要勤总结。多总结知识内容,总结解题方法,解题思想。一方面能够起到复习巩固的作用,另一方面能提高自己的自学能力。

数学的四大思维体系:数形结合、函数思想、分类讨论、方程思想。

第六章 实 数

- 1 -

一、知识总结

(一)平方根与立方根

1、平方根

(1)定义:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做二次方根。

(2)表示:非负数a的平方根记作±a ,读作“正负根号a”,(a叫做被开方数) (3)性质:正数的平方根有两个,且互为相反数;0的平方根为0;负数的没有平方根。 (4)开平方:求平方根的运算叫做开平方。

Ⅰ、平方根是开平方的结果;Ⅱ、 开平方与平方互为逆运算。 2、算术平方根

(1)定义:正数a的正的平方根a叫做a的算术平方根,0的算术平方根是0。 (2)性质:(1)一个数a的算术平方根具有非负性; 即:a≥0恒成立。 (2)正数的算术平方根只有1个,且为正数;0的算术平方根是0; 负数的没有算术平方根。 3、立方根:

(1)定义:一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也叫做三次方根。

(2)表示:a的立方根记作3a,读作“三次根号a”(a叫做被开方数,3叫根指数) (3)性质:正数的立方根是1个正数;负数的立方根是1个负数;0的立方根是0。

(二)实数

1、无理数:无限不循环的小数。(一个无理数与若干有理数之间的运算结果还是无理数) 2、实数:有理数和无理数统称为实数。 3、实数分类:(1)按定义分(略) (2)按正负性分(略) 4、实数与数轴上的点一一对应。 5、实数的相反数、绝对值、倒数:(与有理数的相反数、绝对值、倒数意义类似) 6、实数的运算:实数与有理数一样,可以进行加、减、乘、除、乘方运算,正数及零可以进行开平方运算,任意一个实数可以进行开立方运算,而且有理数的运算法则和运算律对于实数仍然适用。 7、实数大小:(1)正数> 0 > 负数; (2)两个负数相比,绝对值大的反而小;绝对值小的反而大。(3)数轴上不同的点表示的数,右边点表示的数总比左边的点表示的数大。 实数比较大小的方法:作差法、平方法、作商法、倒数法、估值法······

二、解题实用

1、2?1.41421 3?1.732 5?2.236 2、a?a

2?a?2?a 3a3??a??a

33 3、a?b?ab a?b?

- 2 -

aa? ?b?0?

bb

三、典题练习

1、16的平方根是 ;?-3?的算术平方根是 ;-32的立方根是 。

22、如果一个有理数的算术平方根与立方根相同,那么这个数是 ;如果一个 有理数的平方根与立方根相同,那么这个数是 。

3、一个自然数的算术平方根是x,则与他相邻的下一个自然数的算术平方根是 。 4、下列各数中一定为正数的是 (填序号)

① x ② x?1 ③x2 ④ 3x?1 ⑤ x?1 5、当x<-1时,x2,-x,-x3和6、比较下列各组数的大小

?1?2-3与2-2 ?2?1与7 ?3?35与211 ?4?-1的大小关系 。 x11与- 2?7457、7-2的绝对值为 ,相反数为 ,倒数为 。 8、已知x?3,y为4的平方根,xy?0,求x+y的值。 9、已知x?3?y-2?0,求x+y的平方根。

2

10、如果一个非负数的平方根为2a-1和a-5,则这个数是 。 11、a为5的整数部分,b为5的小数部分,则a+2b的值为 。 12、若2011-a?a-2012?a,试求a-2011的值。(提示:找出题中的隐含条件)

2第七章 一元一次不等式与不等式组

一、知识总结

(一)不等式及其性质

1、不等式:

(1)定义用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.

(2)不等式的解:能使不等式成立的未知数的值,叫做不等式的解。

(3)不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式的解集的过程叫做解不等式。

不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值。

二者的关系是:解集包括解,所有的解组成了解集。

- 3 -