内容发布更新时间 : 2025/1/23 8:02:34星期一 下面是文章的全部内容请认真阅读。
航空航天用复合材料的研究现状、制备方法、原理和运用
航空航天用复合材料的研究现状、制备方法、原理和运用
摘要:本文主要从复合材料的特点出发,针对在航空工业应用广泛的预形件成形和结构成形各项技术进行了全面系统的介绍。并对其在航空航天中的应用情况以及发展难点和研发现状作了简要概述。
关键词:复合材料、航空制造、航空运用
0.前言:复合材料(Advabced Composite Materirals ACM)成功地用于航空航天领域
仅有20多年的历史,它具有比强度比模量高,可设计性强、抗疲劳性能好、耐腐蚀性能优越以及便于大面积整体成型等显著优点,显示出比传统钢、铝合金结构材料更优越的综合性能,在飞机上已获得 大量应用,可实现飞机结构相应减重25%~30%,作为21世纪的主导材料,先进复合材料的用量已成为飞机先进性,乃至航空航天领域先进性的一个重要标志,是世界强国竞相发展的核心技术,也是我国的重点发展领域。
一.复合材料的概述 1.1概念
复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。
1.2性能
复合材料中以纤维增强材料应用最广、用量最大。其特点是比重小、比强度和比模量大。例如碳纤维与环氧树脂复合的材料,其比强度和比模量均比钢和铝合金大数倍,还具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能。石墨纤维与树脂复合可得到膨胀系数几乎等于零的材料。纤维增强材料的另一个特点是各向异性,因此可按制件不同部位的强度要求设计纤维的排列。以碳纤维和碳化硅纤维增强的铝基复合材料,在500℃时仍能保持足够的强度和模量。碳化硅纤维与钛复合,不但钛的耐热性提高,且耐磨损,可用作发动机风扇叶片。碳化硅纤维与陶瓷复合,使用温度可达1500℃,比超合金涡轮叶片的使用温度(1100℃)高得多。碳纤维增强碳、石墨纤维增强碳或石墨纤维增强石墨,构成耐烧
航空航天用复合材料的研究现状、制备方法、原理和运用
蚀材料,已用于航天器、火箭导弹和原子能反应堆中。非金属基复合材料由于密度小,用于汽车和飞机可减轻重量、提高速度、节约能源。用碳纤维和玻璃纤维混合制成的复合材料片弹簧,其刚度和承载能力与重量大5倍多的钢片弹簧相当。
1.3成型方法
复合材料的成型方法按基体材料不同各异。树脂基复合材料的成型方法较多,有手糊成型、喷射成型、纤维缠绕成型、模压成型、拉挤成型、RTM成型、热压罐成型、隔膜成型、迁移成 型、反应注射成型、软膜膨胀成型、冲压成型等。金属基复合材料成型方法分为固相成型法和液相成型法。前者是在低于基体熔点温度下,通过施加压力实现成型,包括扩散焊接、粉末冶金、热轧、热拔、热等静压和爆炸焊接等。后者是将基体熔化后,充填到增强体材料中,包括传统铸造、真空吸铸、真空反压铸造、挤压铸造及喷铸等、陶瓷基复合材料的成型方法主要有固相烧结、化学气相浸渗成型、化学气相沉积成型等。
二.航空复合材料制造技术
2.1零件成形技术
复合材料零件成形技术是在满足零件外形的情况下,不损伤纤维并确保它们合理地分布在
基体中而不产生重大空隙的工艺方法。目前在飞机机体上采用的复合材料零件成形技术主要有以下几种。
1) 树脂转移模塑成形技术(RTM)
树脂转移模塑成形技术是一种低成本复合材料制造方法,最初主要用于飞机次承力结构件,如舱门和检查口盖。1996年美国防务预研局开展了高强度主承力构件的低成本RTM制造技术研究,从而使中小型复合材料RTM零件获得了较广泛的应用,而大型RTM件也在F-35的垂尾上应用成功。
2) 树脂浸渍技术(RFI)
RFI工艺是一种树脂膜熔渗和纤维预制体相结合的一种低成本复合材料成形技术。该技术由于只采用传统的真空袋压成形方法,免去了RTM工艺所需的树脂计量注射设备及双面模具的加工,在制造出优异的制品的同时大大降低了制品的成本,目前主要应用于飞机雷达天线罩。该工艺虽然不采用热压罐固化零件,但还需要真空袋系统进行固化,而且工艺温度要求高,所以要求核心材料和工装能够承受高温。RFI适用于大平面或不太复杂的曲面。A380的机翼后缘和后压力隔框,波音787机身的大部分隔框,GEnx的风扇机匣都是采用RFI技术制造。RFI的关键工艺技术包括:预形件成形(三维编织及缝合等技术)、树脂流动模拟及控制、编织及缝合设备研究。
3) 纤维缠绕(Filament Winding)
航空航天用复合材料的研究现状、制备方法、原理和运用
该工艺主要用于空心、圆形及椭圆零件,如管路及油箱。纤维束通过一个树脂池浸渍后缠绕到芯轴上,缠绕方向和速度由纤维进给装置控制。这是一项已经发展较为成熟的技术,无论是在自动化、速度、厚度变化、质量和纤维方向上都得到了巨大改进。它是筒形件的低成本快速制造方法。在GEnx风扇包容机匣预形件的制造中,采用了一种编织带缠绕技术,即将编织好的石墨纤维带通过滚筒在芯轴上缠绕数十层,制成预形件。
4) 自动铺带技术(ATL)
ATL采用有隔离衬纸的单向预浸带,剪裁、定位、铺叠、辊压均采用数控技术自动完成,由自动铺带机实现。按所铺放构件的几何特征,自动铺带机可分为平面铺带和曲面铺带,系统由台架系统和铺带头组成。
5) 自动铺丝技术(AFP)
自动铺丝技术相对较新并在近年格外受到关注。它兼顾了自动铺叠与纤维缠绕的优点。能够制造复杂形状结构件,对纤维角度不限制。而且具有极大减少生产成本的潜力。
2.预形件制造技术
复合材料预形件制造技术主要是增强二维复合材料叠层结构在厚度方向的强度,以提高层间和断裂强度。
1) 缝合技术(stitching)
缝合织物增强复合材料是采用高性能纤维和工业用缝合机将多层二维纤维织物缝合在一起,经复合固化而成的纺织复合材料。它通过引用贯穿厚度方向的纤维来提高抗分层能力,提高层间强度、模量、抗剪切能力、抗冲击能力、抗疲劳能力等力学性能,从而满足结构件的性能需求。
2) 纵向加强技术(Z-pinning)
这是复合材料结构三维加强的一种简单方法,在多个方面优于缝合技术,但不能用于制造预形件。该工艺是利用薄的销棒以正确的角度在固化前或固化时插入二维的碳纤维环氧复合材料层板中,从而获得三维增强复合材料结构。
3) 三维异形整体机织(weave)
该工艺目前已经广泛用于复合材料工业,作为复合材料的增强体,主要用于生产单层、宽幅织物。三维异型整体机织技术是国外20世纪80年代发展起来的高新复合材料纺织技术,它创造了一类新的复合材料结构形式。采用三维异型整体机织技术制造的复合材料制件具有整体性和力学的合理性两大特点,是一种高级纺织复合材料。
4) 编织(braiding)
编织是一种基本的纺织工艺,能够使两条以上纱线在斜向或纵向互相交织形成整体结构的