内容发布更新时间 : 2025/1/1 10:29:47星期一 下面是文章的全部内容请认真阅读。
谈谈数学中的美
【】“哪里有数学,哪里就有美”。只要我们用心体会,它们就会呈现出来,给我们以美的享受。有:简洁美;符号美,抽象美,统一美;协调美,对称美;公式的普遍性;应用的广泛性;奇异美等。
【】美,符号,黄金分割,对称
当你倘佯在音乐的殿堂,聆听那优美动听的乐曲时,你会体会到音乐带给你的“美”的享受;当你漫步在文学的天地,欣赏着那“惊天地,泣鬼神”的绝妙语句,一定能够领悟文学带给你的的“美”……其实,“那里有数学,哪里就有美”,这是古代哲学家对数学美的一个高度评价.数学中同样存在着能够启迪智慧,陶冶情操的“美”。数学美的内容是丰富的,如数学概念的简单性,统一性,结构关系的协调性、对称性;公式的普遍性、应用的广泛性,还有奇异性等都是数学美的具体内容。下面结合初等数学谈谈我对数学美的理解。
1数学概念的简洁美
数学中的概念许许多多,但每个概念都是以最精炼、最概括的语言给出的。如代数中因式分解的概念:把一个多项式分解成几个整式乘积的形式。几何中线段垂直平分线的概念:“垂直于这条线段并且平分这条线段的直线等。如:如在《图的初步知识》教学中,可以先让学生去探究过两点的直
第 1 页
线有多少条?然后再让学生用自己的语言来概括这个结论,最后教师再给出“两点确定一条直线”,短短的一句话,简练严谨,内涵丰富,充分让学生体会了数学定理的简洁之美;又如九年级上圆的定义“圆是到定点的距离等于定长的点的集合”,若无“集合”则形成了点,构不成圆,一字之差则情况相差万里,充分体现了数学概念的简洁美。 2符号美、抽象美、统一美
数学知识大部分由数字和符号组成,从四则运算到比较大小,还有运算中的大、中、小括号,符号都讲究大小适中、上下左右对称。美好的数字:一是万物之始,一统天下、一马当先;二是偶数,双喜临门、比翼双飞;一去二三里,烟村四五家。亭台六七座,八九十枝花(邵雍);七八个星天外,两三点雨山前(辛弃疾);一帆一桨一渔舟,一个渔翁一钓钩。一俯一仰一顿笑,一江明月一江秋(纪晓岚)。读了上面的成语、诗,每个人都明显感到,无论是数字的单个应用或重复引用或循环使用,看似毫无感染力的数字竟能表现出各种思想感情。 3结构系统的协调美、对称美
数学中这种对称性处处可见,如几何中的轴对称、中心对称;代数中多项式方程虚根的成对出现,函数与反函数图像的关系(关于直线yzx对称)等都显现出对称性。对称性能给人美观舒适之感。四边形的形状是多种多样的,但最完美的是正方形,因为它的对称轴比任何四边形都多,而且还是中心对
第 2 页
称图形。这些性质使正方形获得了人们的喜爱和广泛应用。如人们用边长为单位长度的正方形面积,作为度量其它图形面积的基本单位。人们也喜欢用正方形图案美化环境。比如用正方形地板砖铺室内外地面,不仅美观大方,而且施工简单易行。毕达哥拉斯说:“一切立体图形中最美的是球形,一切平面图形中最美的是圆形。”因为这两种图形在任何方向上看都是对称的。其实在我们身边随处可见根据对称设计的东西。小到一块橡皮、一只球拍,大到一架飞机、一座建筑。著名的北京人民大会堂;高耸入云的上海东方电视塔;埃及金字塔的缩影;形象逼真的扇形;梅花瓣样的组合图形;铜钱式的圆中方;美丽的“雪花”图案,更显示出几何图形的对称美,和谐美。 4公式的普遍性
世界上存在着无数形状不同、大小不一的三角形,但面积公式S=1/2ah适用于一切三角形面积的计算,这也是数学美的具体体现。 5应用的广泛性
随着科学的发展和社会的进步,数学也越来越多的渗透到科学技术乃至社会生活的各个领域。到银行存款,会遇到利率的问题;铅球运动员应懂得应如何投掷才能取得理想成绩;足球运动员也要明白在何处出脚才最易命中对方的球门……此外,数学家把聪明给了电子计算机,电子计算机也
第 3 页
使数学家变得更聪明。一句话“哪里有生命,哪里就有数学”。这也正是数学应用广泛性的体现,也是数学美的重要内容。 6奇异美
奇异性就是新颖性、开拓性。我们以“√2”的出现为例。在无理数未出现前,人们认为任何两条线段的长都是可公约的。但后来有人发现正方形的对角线和边是不可公约的。及“√2”不能表示成两整数之比,这种奇异的结果导致数系的扩大,使人们从有理数的狭小的圈子跳出来,产生了知识的新飞跃,由此我们不难理解为什么数学上以奇为美。 此外,数学中的“勾股定理”“黄金分割”更是数学美的具体体现。勾股定理像一颗璀璨的明珠,具有无穷的魅力,使不少人为之倾倒,现有的证法至少有370种,成为世界上证法最多的的定理。黄金分割被广泛的应用在建筑建设,音乐美术等各方面。如五角星的各边是按黄金分割处理的;设计工艺品或日常品的宽和长时常设计成宽与长的比近似为0.618,0.618这个数是古希腊欧多克斯发现的,有趣的是,从此以后,这个数与人类有许多不解之缘:希腊女神体态轻柔优美,引人入胜。经专家研究,她的身体从脚到肚脐之间的距离与整个身高的比值,恰好是0.618。画家、艺术家将其引入到绘画、雕塑等艺术领域,让作品变得更加和谐、美丽;舞台的报幕员也总是喜欢站在舞台0.618处时,音响效果最好,而
第 4 页
且人也显得自然、大方。人在气温23℃左右,最舒服,生理功能发挥得最好。这些都是源于黄金分割原理。
数学美除了以上具体内容外,还有在于数学教学当中。教师绘声绘色的讲解、精辟的分析、巧妙的点拨、生动的语言、合理的板书等都给学生以美的享受。教学中教师应当经常有意识的向学生讲解数学发展史,数学的广泛应用,不断展示数学的美,进一步理解美的真正含义。
数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的。它可以改变人们认为对数学枯燥无味的成见,让人们认识到数学也是一个五彩缤纷的美的世界。如果说数学使许多人心旷神怡,并为之付出毕生的精力,从而促进了数学学科的飞速发展,那么,它也一定能够激发更多的有志青年追求知识,探索未来的强烈愿望,因为“美”在数学中存在。
第 5 页