ÄÚÈÝ·¢²¼¸üÐÂʱ¼ä : 2025/9/19 20:51:07ÐÇÆÚÒ» ÏÂÃæÊÇÎÄÕµÄÈ«²¿ÄÚÈÝÇëÈÏÕæÔĶÁ¡£
¡¾Ô´´¡¿¸½´úÂëÊý¾Ý
ÓÐÎÊÌâµ½ÌÔ±¦ÕÒ¡°´óÊý¾Ý²¿Â䡱¾Í¿ÉÒÔÁË
¶àÔªÏßÐԻعéÄ£ÐÍÖУ¬Èç¹ûËùÓÐÌØÕ÷Ò»ÆðÉÏ£¬ÈÝÒ×Ôì³É¹ýÄâºÏʹ²âÊÔÊý¾ÝÎó²î·½²î¹ý´ó£»Òò´Ë¼õÉÙ²»±ØÒªµÄÌØÕ÷£¬¼ò»¯Ä£ÐÍÊǼõС·½²îµÄÒ»¸öÖØÒª²½Öè¡£³ýÁËÖ±½Ó¶ÔÌØÕ÷ɸѡ£¬À´Ò²¿ÉÒÔ½øÐÐÌØÕ÷ѹËõ£¬¼õÉÙijЩ²»ÖØÒªµÄÌØÕ÷ϵÊý£¬ÏµÊýѹËõÇ÷½üÓÚ0¾Í¿ÉÒÔÈÏΪÉáÆú¸ÃÌØÕ÷¡£
Áë»Ø¹é£¨Ridge Regression£©ºÍLasso»Ø¹éÊÇÔÚÆÕͨ×îС¶þ³ËÏßÐԻعéµÄ»ù´¡ÉϼÓÉÏÕýÔòÏîÒÔ¶Ô²ÎÊý½øÐÐѹËõ³Í·£¡£ Ê×ÏÈ£¬¶ÔÓÚÆÕͨµÄ×îС¶þ³ËÏßÐԻع飬ËüµÄ´ú¼Ûº¯ÊýÊÇ£º
ÏßÐԻعéRSS
ͨ¹ýÄâºÏϵÊý¦ÂÀ´Ê¹RSS×îС¡£·½·¨ºÜ¼òµ¥£¬Ç󯫵¼ÀûÓÃÏßÐÔ´úÊý½â·½³Ì×é¼´¿É¡£ ¸ù¾ÝÏßÐÔ´úÊýµÄÀíÂÛ¿ÉÖª£¬Ö»ÒªÑù±¾Á¿ºÏÊÊ£¬Ëü¾Í´æÔÚΨһ½â£¬Ò²¾ÍÊǸÃÄ£Ð͵Ä×îÓŽ⡣
Õâô×ö¾¡¹ÜʹRSS´ïµ½ÁË×îС£¬Ëü»¹ÊǰÑËùÓеÄÌØÕ÷¿´×÷ͬÑùÖØÒªµÄ³Ì¶ÈÀ´Çó½â£¬²¢Ã»ÓÐ×öÈκÎÌØÕ÷Ñ¡Ôñ£¬Òò´Ë´æÔÚ¹ýÄâºÏµÄ¿ÉÄÜ¡£
Áë»Ø¹éÔÚOLS»Ø¹éÄ£Ð͵ÄRSSÉϼÓÉÏÁ˳ͷ£Ïl2·¶Êý£©£¬ÕâÑù´ú¼Ûº¯Êý¾Í³ÉΪ£º
Áë»Ø¹éµÄ´ú¼Ûº¯Êý
¦ËÊÇÒ»¸ö·Ç¸ºµÄµ÷½Ú²ÎÊý£¬¿ÉÒÔ¿´µ½£ºµ±¦Ë=0ʱ£¬´ËʱËüÓëRSSÒ»Ö£¬Ã»ÓÐÆðµ½Èκγͷ£×÷Ó㻵±¦Ë -> ¡Þʱ£¬ËüµÄ³Í·£ÏîÒ²¾ÍÊÇÎÞÇî´ó£¬¶øÎªÁËʹ´ú¼Ûº¯Êý×îС£¬Ö»ÄÜѹËõϵÊý¦ÂÇ÷½üÓÚ0¡£
µ«ÊÇÒòΪ¦Ë²»¿ÉÄÜΪÎÞÇî´ó£¬¶þ´ÎÏîÇ󯫵¼Ê±×ܻᱣÁô±äÁ¿±¾Éí£¬ËùÒÔÊÂʵÉÏËüÒ²²»¿ÉÄÜÕæÕýµØ½«Ä³¸öÌØÕ÷ѹËõΪ0¡£¾¡¹ÜϵÊý½ÏС¿ÉÒÔÓÐЧ¼õС·½²î£¬µ«ÒÀÈ»Áô×ÅÒ»´ó³¤´®ÌØÕ÷»áʹģÐͲ»±ãÓÚ½âÊÍ¡£ÕâÊÇÁë»Ø¹éµÄȱµã¡£ lasso»Ø¹éµÄÕýÏîÔò¾Í°Ñ¶þ´ÎÏî¸Ä³ÉÁËÒ»´Î¾ø¶ÔÖµ£¨l1·¶Êý£©£¬¾ßÌåΪ£º
lasso»Ø¹éµÄ´ú¼Ûº¯Êý
Ò»´ÎÏîÇ󵼿ÉÒÔĨȥ±äÁ¿±¾Éí£¬Òò´Ëlasso»Ø¹éµÄϵÊý¿ÉÒÔΪ0¡£ÕâÑù¿ÉÒÔÆðÀ´ÕæÕýµÄÌØÕ÷ɸѡЧ¹û¡£ ÎÞÂÛ¶ÔÓÚÁë»Ø¹é»¹ÊÇlasso»Ø¹é£¬±¾Öʶ¼ÊÇͨ¹ýµ÷½Ú¦ËÀ´ÊµÏÖÄ£ÐÍÎó²îvs·½²îµÄƽºâµ÷Õû¡£
¡¾Ô´´¡¿¸½´úÂëÊý¾Ý
ÓÐÎÊÌâµ½ÌÔ±¦ÕÒ¡°´óÊý¾Ý²¿Â䡱¾Í¿ÉÒÔÁË
ѵÁ·¹¹½¨Áë»Ø¹éÄ£ÐÍ
> library(ISLR) > Hitters = na.omit(Hitters) > x = model.matrix(Salary~., Hitters)[,-1] # ¹¹½¨»Ø¹éÉè¼Æ¾ØÕó > y = Hitters$Salary > > library(glmnet) > grid = 10^seq(10,-2,length = 100) # Éú³É100¸ö¦ËÖµ > ridge.mod = glmnet(x,y,alpha = 0,lambda = grid) # alphaΪ0±íʾÁë»Ø¹éÄ£ÐÍ£¬Îª1±íʾlasso»Ø¹éÄ£ÐÍ > > dim(coef(ridge.mod)) # 20*100µÄϵÊý¾ØÕó¡£20ÊÇ19¸öÌØÕ÷+½Ø¾àÏ100ÊǦËÖµ [1] 20 100 > > # ÏÔÈ»¿É¼ûl2·¶ÊýÔ½´ó£¬ÏµÊý¾ÍԽС > ridge.mod$lambda[50] [1] 11497.57 > coef(ridge.mod)[,50] (Intercept) AtBat Hits HmRun Runs 407.356050200 0.036957182 0.138180344 0.524629976 0.230701523 RBI Walks Years CAtBat CHits 0.239841459 0.289618741 1.107702929 0.003131815 0.011653637 CHmRun CRuns CRBI CWalks LeagueN 0.087545670 0.023379882 0.024138320 0.025015421 0.085028114 DivisionW PutOuts Assists Errors NewLeagueN -6.215440973 0.016482577 0.002612988 -0.020502690 0.301433531 > ridge.mod$lambda[60] [1] 705.4802 > coef(ridge.mod)[,60]
¡¾Ô´´¡¿¸½´úÂëÊý¾Ý
ÓÐÎÊÌâµ½ÌÔ±¦ÕÒ¡°´óÊý¾Ý²¿Â䡱¾Í¿ÉÒÔÁË (Intercept) AtBat Hits HmRun Runs 54.32519950 0.11211115 0.65622409 1.17980910 0.93769713 RBI Walks Years CAtBat CHits 0.84718546 1.31987948 2.59640425 0.01083413 0.04674557 CHmRun CRuns CRBI CWalks LeagueN 0.33777318 0.09355528 0.09780402 0.07189612 13.68370191 DivisionW PutOuts Assists Errors NewLeagueN -54.65877750 0.11852289 0.01606037 -0.70358655 8.61181213 > > # ÊäÈëÒ»¸öеĦˣ¬±ÈÈç50£¬À´Ô¤²âϵÊý > predict(ridge.mod,s=50,type=\)[1:20,] (Intercept) AtBat Hits HmRun Runs 4.876610e+01 -3.580999e-01 1.969359e+00 -1.278248e+00 1.145892e+00 RBI Walks Years CAtBat CHits 8.038292e-01 2.716186e+00 -6.218319e+00 5.447837e-03 1.064895e-01 CHmRun CRuns CRBI CWalks LeagueN 6.244860e-01 2.214985e-01 2.186914e-01 -1.500245e-01 4.592589e+01 DivisionW PutOuts Assists Errors NewLeagueN -1.182011e+02 2.502322e-01 1.215665e-01 -3.278600e+00 -9.496680e+00 > > # »®·ÖѵÁ·¼¯ºÍ²âÊÔ¼¯ > set.seed(1) > train = sample(1:nrow(x),nrow(x)/2) > test = (-train) > y.test = y[test] > > # ѵÁ·Ä£ÐÍ£¬²¢¼ÆËã¦Ë=4ʱµÄMSE