内容发布更新时间 : 2025/1/15 19:04:42星期一 下面是文章的全部内容请认真阅读。
拓扑空间中集合的导集
题目:拓扑空间中集合的导集
摘要:如果在一个拓扑空间中给定一个子集,那么拓扑空间中的每一个点相对于这个子集而言“处境”各不相同,因此可以对它们进行分类处理。本文介绍了拓扑空间中集合的导集。 正文:
1、拓扑空间的定义:
设X是一个集合,T是X的一个子集族,如果T满足如下条件: (1)X, ∈T;(2)若A,B∈T,则A∩B∈T;(3)若 ∈T,则 ,则称T是X的一个拓扑。
如果T是集合X的一个拓扑,则称偶对(X,T)是一个拓扑空间或称集合X是一个相对于拓扑T的拓扑空间,或当拓扑T早已约定或在行文中已有说明而无须指出时,则称集合X是一个拓扑空间。 2、导集的定义
设X是一个拓扑空间,AX.如果点x∈X的每一个邻域U中都有A中异于x的点,即U∩(A-{x})≠,则称点x是集合A的一个凝聚点或极限点.集合A的所有凝聚点构成的集合称为A的导集,记作d(A).如果x∈A并且x不是A的凝聚点,即存在x的一个邻域U使得U∩(A-{x})=,则称x为A的一个孤立点.
即:(牢记)
3、 离散空间中集合的凝聚点和导集.
设X是一个离散空间,A是X中的一个任意子集.由于X中的每一个单点集都是开集,因此如果x∈X,则X有一个邻域{x},使得
,以上论证说明,集合A没有任何一个凝
聚点,从而A的导集是空集,即d(A)=. 4、平庸空间中集合的凝聚点和导集.
设X是一个平庸空间,A是X中的一个任意子集.我们分三种情形讨论:
第1种情形:A=.这时A显然没有任何一个凝聚点,亦即 d(A)=.(可以参见定理2.4.1中第(l)条的证明.) 第2种情形:A是一个单点集,令 A={}如果x∈X,x≠,点x只有惟一的一个邻域X,这时
,所以
;因此x是A的一个凝聚点,即x∈d(A).然而对
于的惟一邻域X有:d(A)=X-A.
第3种情形:A包含点多于一个.请读者自己证明这时X中的每一个点都是A的凝聚点,即d(A)=X. 定理:设X是一个拓扑空间,AX.则 (l)d()=;
(2)AB蕴涵d(A)d(B);
所以
(3)d(A∪B)=d(A)∪d(B);
(4)d(d(A))A∪d(A).
定义 设X是一个拓扑空间,AX.如果A的每一个凝聚点都属于
A,即d(A)A,则称A是拓扑空间X中的一个闭集.
例如,离散空间中的任何一个子集都是闭集,而平庸空间中的任何一个非空的真子集都不是闭集.
定理 设X是一个拓扑空间,AX.则A是一个闭集,当且仅当A的补集是一个开集.
定理 设X是一个拓扑空间.记F为所有闭集构成的族.则: (1)X,∈F
(2)如果A,B∈F,则AUB∈F (从而如果 (3)如果≠
)
在此定理的第(3)条中,我们特别要求≠的原因在于当 =时所涉及的交运算没有定义.
总结:(1)有限个开集的交是开集,任意个开集的并是开集.其余情形不一定.
(2)有限个闭集的并是闭集,任意个闭集的交是闭集.其
余情形不一定.
定义 设X是一个拓扑空间,AX,集合A与A的导集d(A)的并A∪d(A)称为集合A的闭包,记作或
容易看出,
(注意:与x∈d(A)的区别)