内容发布更新时间 : 2024/12/27 18:12:00星期一 下面是文章的全部内容请认真阅读。
浙江工商大学杭州商学院《概率论与数理统计》课程考试试卷A,适用专业:文理科各专业
浙江工商大学杭州商学院 2012 /2013学年第一学期考试试卷(A)
课程名称: 概率论与数理统计 考试方式: 闭卷 完成时限:120分钟 班级名称: 学号: 姓名: 题号 分值 得分 阅卷人 一 10 二 16 三 10 四 12 五 12 六 8 七 8 八 12 九 12 总分 100 一、单项选择题(每小题2分,共10分)
1、若事件A,B互不相容,0?P(A)?p?1,0?P(B)?q?1,则推不出结论( )。 (A)P(AB)?0
(B)P(A B)?0 (C)P(AB)?p
(D)P(A?B)?1
2、设10件产品中有4件不合格品,从中任取2件,已知所取2件中有1件是不合格品,则另外1件也是不合格品的概率为( )。
1111(A) (B) (C) (D)
23453、设两个相互独立的随机变量X和Y的方差分别为4和2,则随机变量3X?2Y的方差是
( )。 (A)8
(B)16
(C)28 (D)44
4、设随机变量X~N(0,1),Y~N(1,4),且相关系数?XY?1,则( )。 (A)P(Y??2X?1)?1
(B)P(Y?2X?1)?1
(C)P(Y??2X?1)?1 (D)P(Y?2X?1)?1
5、设总体X均值?与方差?2都存在,且均为未知参数,而X1,X2,?,Xn是该总体的一个样本,X为样本方差,则总体方差?2的矩估计量是( )。
1n1n2(A)?(Xi??) (B)(Xi??)2 ?ni?1n?1i?11n1n2(C)?(Xi?X) (D)(Xi?X)2 ?n?1i?1ni?1第 1 页 共 6页
浙江工商大学杭州商学院《概率论与数理统计》课程考试试卷A,适用专业:文理科各专业
二、填空题(每小题2分,共16分)
1、设A,B为随机事件,P(A)?0.7,P(A?B)?0.3,则P(AB)?________。 2、设随机变量X服从参数为?的指数分布,则E(X2)?_______。
3、设两个相互独立的随机变量X与Y分别服从正态分布N(0,1)和N(1,1),则P{X?Y?1} = 。
4、若随机变量T在(1,6)上服从均匀分布,则方程x2?Tx?1?0有实根的概率是 。 5、设随机变量X的数学期望EX??,方差DX??2,则由切比雪夫不等式有
P{X???3?} 。
6、设总体X~N(?,?),X1,X2,?,Xn为其样本,则布 。
7、设总体X的期望值?和方差?都存在,总体方差?的无偏估计量是k?(Xi?1?Xi)2,则
2
2
21?2?(Xi?1ni?X)2服从分
n?1i?1k? 。
8、设总体X~N(?, ?2),且?2未知,用样本检验假设H0:???0时,采用的统计量是 。
三、仓库中有不同工厂生产的灯管,其中甲厂生产的为1000支,次品率为2%;乙厂生产的为2000支,次品率为3%;丙厂生产的为3000支,次品率为4%。如果从中随机抽取一支,求:(1)取到的是次品的概率;(2)若取到的是次品,它是甲厂生产的概率。(10分)
第 2 页 共 6页
浙江工商大学杭州商学院《概率论与数理统计》课程考试试卷A,适用专业:文理科各专业
四、设随机向量X,Y的联合分布为:
X Y 1 2 3 1 0 1 61 122 1 61 61 63 1 121 6 0 (1) 在X?1的条件下Y的条件分布律;(2) 判断X,Y是否独立;(3)E(X?Y)。(12分)
?cy(2?x),0?x?1,0?y?x五、设二维随机变量(X,Y)的概率密度是f(x,y)??
0,其它?求:(1) c的值;(2) X的边缘概率密度;(3)概率P{X?Y?1}。(12分)
第 3 页 共 6页