高等数学下册期末考试试题及答案 下载本文

内容发布更新时间 : 2024/12/29 12:29:14星期一 下面是文章的全部内容请认真阅读。

高数

高等数学(下册)期末考试试题

考试日期:2012年

院(系)别

大题 小题 得分 班级 学号 姓名

二 3 三 四 五 成绩 六 七 一 1 2 4 5 一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)

1、已知向量a、b满足a?b?0,a?2,b?2,则a?b? .

?3z? . 2、设z?xln(xy),则

?x?y23、曲面x?y?z?9在点(1,2,4)处的切平面方程为 .

4、设f(x)是周期为2?的周期函数,它在[??,?)上的表达式为f(x)?x,则f(x)的傅里叶级数 在x?3处收敛于 ,在x??处收敛于 . 5、设L为连接(1,0)与(0,1)两点的直线段,则

22?(x?y)ds? .

L※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级. 二、解下列各题:(本题共5小题,每小题7分,满分35分)

222??2x?3y?z?91、求曲线?2在点M0(1,?1,2)处的切线及法平面方程. 22??z?3x?y2、求由曲面z?2x?2y及z?6?x?y所围成的立体体积.

22223、判定级数

?(?1)nlnn?1?n?1是否收敛?如果是收敛的,是绝对收敛还是条件收敛? n?z?2zx,4、设z?f(xy,)?siny,其中f具有二阶连续偏导数,求. ?x?x?yy5、计算曲面积分

dS2222x?y?z?a,其中是球面被平面z?h(0?h?a)截出的顶部. ???z? 第 1 页 共 2 页

高数

三、(本题满分9分)

抛物面z?x?y被平面x?y?z?1截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.

22四、 (本题满分10分)

计算曲线积分

?L(exsiny?m)dx?(excosy?mx)dy,

22其中m为常数,L为由点A(a,0)至原点O(0,0)的上半圆周x?y?ax(a?0).

五、(本题满分10分)

xn求幂级数?n的收敛域及和函数.

n?13?n?六、(本题满分10分)

计算曲面积分I?3322xdydz?2ydzdx?3(z?1)dxdy, ???22其中?为曲面z?1?x?y(z?0)的上侧.

七、(本题满分6分)

设f(x)为连续函数,f(0)?a,F(t)????[z?f(x?tt?02?y2?z2)]dv,其中?t是由曲面z?x2?y2与z?t?x?y所围成的闭区域,求 lim?

222F(t). t3-------------------------------------

备注:①考试时间为2小时;

②考试结束时,请每位考生按卷面?答题纸?草稿纸由表及里依序对折上交;

第 2 页 共 2 页

高数

不得带走试卷。

高等数学A(下册)期末考试试题【A卷】

参考解答与评分标准 2009年6月

一、填空题【每小题4分,共20分】 1、?4; 2、?二、试解下列各题【每小题7分,共35分】

1;3、2x?4y?z?14; 4、3,0; 5、2. 2ydz?dy3y?z??2x?dy5xdz7x?dxdx?1、解:方程两边对x求导,得?, 从而,…………..【4】 ??dx4ydx4z?ydy?zdz??3x?dx?dx该曲线在

?1,?1,2?处的切向量为T?(1,4,8)?8(8,10,7).…………..【5】

571x?1y?1z?2??故所求的切线方程为………………..【6】 8107法平面方程为

8?x?1??10?y?1??7?z?2??0 即 8x?10y?7z?12……..【7】

?z?2x2?2y22222?x?y?22、解:?,该立体在面上的投影区域为 xOyD:x?y?2.…..【2】?xy22?z?6?x?y故所求的体积为V????dv??d???02?20?d??6??22?2dz?2??20?(6?3?2)d??6?……..【7】

?11n3、解:由limnun?limnln(1?)?limln(1?)?1?0,知级数?un发散…………………【3】

n??n??nn??nn?1又|un111|?ln(1?)?ln(1?)?|un?1|,lim|un|?limln(1?)?0.故所给级数收敛且条件收敛.【7】

n??n??nn?1n4、解:

?z11?(f1??y?f2??)?0?yf1??f2?, …………………………………【3】 ?xyy1x?2zx11x???2f2??3f22??.【7】???x?f12???(?2)]?2f2??[f21???x?f22???(?2)]?f1??xyf11 ?f1??y[f11?x?yyyyyyy5、解:?的方程为z又221?zx?zy?a?a2?x2?y2,?在xOy面上的投影区域为Dxy?{(x,y)|x2?y2?a2?h2}. a2?x2?y2,…..………【3】

第 3 页 共 2 页