ANSYS的热分析 下载本文

内容发布更新时间 : 2024/6/16 2:54:38星期一 下面是文章的全部内容请认真阅读。

度为华氏100度,与管壁的对流换热系数随管壁温度而变。接管与罐为同一种材料,它的热物理性能如下表所示: 温度 密度 导热系数 比热 对流系数* 70 0.285 8.35 0.113 426 200 0.285 8.90 0.117 405 300 0.285 9.35 0.119 352 400 0.285 9.8 0.122 275 500 0.285 10.23 0.125 221 oF lbm/in3 Btu/hr-ft-oF Btu/lbm-oF Btu/hr-ft2-oF *接管内壁对流系数 求罐与接管的温度分布。 以下分别列出LOG文件及菜单操作

/prep7

/title,Steady-state thermal analysis of pipe junction /units,bin et,1,90

!使用英制单位

!定义热单元

!建立温度表

!比热

!密度

mp,dens,1,.285

mptemp,,70,200,300,400,500

mpdata,kxx,1,,8.35/12,8.90/12,9.35/12,9.80/12,10.23/12 !导热系数 mpdata,c,1,,0.133,0.177,0.119,0.122,0.125 !定义几何模型参数 ri1=1.3 z1=2 ri2=0.4 z2=2

!罐内半径

ro1=1.5

!罐外半径 !罐长

!接管内半径 !接管外半径 !接管长

!1/4罐体

mpdata,hf,2,,426/144,405/144,352/144,275/144,221/144 !接管对流系数

ro2=0.5

!建立几何模型 cylind,ri1,ro1,,z1,,90 wprota,0,-90 wpstyl,defa vovlap,1,2

cylind,ri2,ro2,,z2,-90

!将工作平面旋转到垂直于接管轴线 !1/4接管

!将工作平面恢复到默认状态 !打开实体编号 !定义显示角度

!进行OVERLAP布尔操作

/pnum,volu,1 /view,,-3,-1,1

/type,,4

/title, Volumes used in building pipe/tank junction vplot

!显示实体

!删除多余实体 !选择罐上Z=Z1的面 !添加选择罐上Y=0的面 !创建名为AREMOTE的面组

vdele,3,4,,1 !划分网格 asel,,loc,z,z1 asel,a,loc,y,0 cm,aremote,area /pnum,area,1

/pnum,line,1

/title,lines showing the portion being modeled aplot /noerase lplot /erase accat,all lccat,12,7 lccat,10,5 lesize,20,,,4 lesize,40,,,6 lesize,6,,,4 allsel

esize,0.4 mshape,0,3d mshkey,1 save

vmesh,all

!在接管壁厚方向分4等分 !在接管长度方向分6等分 !在罐壁厚方向分4等分

!组合罐远端的面及线,为映射划分网

!格作准备

!选择EVERYTHING !设定默认的单元大小

!保存数据文件

!划分网格,产生节点与单元

!选择3D映射网格

/pnum,defa

/title, elements in portion being modeled eplot finish !加载求解 /solu

!定义为稳态分析

!Newton-Raphson

tunif,450 csys,1

!设定初始所有节点温度

!变为柱坐标

!选择罐内表面的节点 !定义对流边界条件

!选择属于AREMOTE面组的节点 !定义节点温度

!将工作平面旋转到垂直于接管轴线 !创建局部柱坐标 !选择接管内壁的节点 !定义对流边界条件 !显示所有温度约束 !显示所有对流边界

!设置求解选项为Program-chosen

antype,static nropt,auto

!显示单元

nsel,s,loc,x,ri1 cmsel,,aremote nsla,,1

d,all,temp,450 wprota,0,-90 cswpla,11,1

sf,all,conv,250/144,450

!选择AREMOTE面组

nsel,s,loc,x,ri2 sf,all,conv,-2,100 allsel

/pbc,temp,,1 /psf,conv,,2 nplot

!选择EVERYTHING

/title,Boundary conditions

!显示节点

wpstyle,defa csys,0

autots,on nsubst,50 kbc,0 solve finish !进入后处理

!工作平面恢复默认状态 !变为直角坐标

!打开自动步厂长 !设定子步数量

!设定为阶越 !设置输出

outpr,nsol,last

!进行求解

/post1

/title,Temperature contrours at pipe/tank junction plnsol,temp finish /exit,all 菜单操作

!显示温度彩色云图

1、设定标题:Utility Menu>File>Change Title,输入Steady-State analysis of pipe junction,选择OK; 2、设定单位制:在命令提示行输入/UNITS,BIN;

3、定义单元类型:Main Menu>Preprocesor>Element Type>Add/Edit/Delete,选择Thermal Solid,

Bricck 20 node 90号单元;

4、定义材料属性

(1)Main Menu>Preprocessor>Material Props>-Constant->Isotropic,默认材料编号1,在

DENSITY框中输入0.285;

(2)Main Menu>Preprocessor>Material Props>-Temp Dependent->Temp Table,输入温度

70,200,300,400,500;

(3)Main Menu>Preprocessor>Material Props>-Temp Dependent->Prop Table,选择导热系数

KXX,材料编号为1,输入与温度表对应的导热系数8.35/12,8.9/12,9.35/12,9.8/12,10.23/12,选择APPLY;

(4)选择比热C,材料编号为1,输入0.113,0.117,0.119,0.122,0.125,选择APPLY;

(5)选择对流系数HF,材料编号为2,输入426/144,405/144,352/144,275/144, 221/144,选择

OK。

5、定义几何模型参数:Utility Menu>Parameters>Scalar Parameters,输入

ri1=1.3,ro1=1.5,z1=2,ri2=0.4,ro2=0.5,z2=2;

6、建立几何模型

(1)Main Menu>Preprocessor>-Modeling->Create>-Volumes->Cylinder>By

Dimensions, Outer radius框中输入ro1,Optional inner radium框中输入ri1,Z coordinates框中输

入0和Z1,Ending angle框中输入90;

(2)Utility Menu>WorkPlane>Offset WP by Increments,在XY,YZ,ZX框中输入0,-90; (3)Main Menu>Preprocessor>-Modeling->Create>-Volumes->Cylinder>By

Dimensions; Outer radius框中输入ro2, Optional inner radium框中输入ri2, Z coordinates框中

输入0和Z2,Starting angle框中输入-90,Ending angle框中输入0;

(4)Utility Menu>WorkPlane>Align WP with>Global Cartesian;

7、进行布尔操作:Main Menu>Preprocessor>-Modeling->Operate>-Booleans->

Overlap >Volumes,选择Pick All;

8、观察几何模型

(1)Utility Menu>PlotCtrls>Numbering,打开volumes;

(2)Utility Menu>PlotCtrls>View Direction, 在Coords of view point框中输入-3,-1,1; 9、 删除多余实体Main Menu>Preprocessor>-Modeling->Delete>Volume and Below,在命令输入

行输入3,4回车;

10、

创建组AREMOTE

Z1,选择APPLY,Y Coordinates, 在Min, Max框中输入0,OK;

(1)Utility Menu>Select>Entities,选择Area, By location, Z Coordinates, 在Min, Max框中输入(2)Utility Menu>Select>Comp/Assembly>Create Component,在Component name框中输入

AREMOTE, 在Components is made of菜单中选择AREA;

11、组合面及线

(1)Main Menu>Preprocessor>-Meshing->Mesh>-Volumes->Mapped>

-Concatenate->Area,选择Pick all;

(2)Main Menu>Preprocessor>-Meshing->Mesh>-Volumes->Mapped>

-Concatenate->Lines,在命令行中输入12,7回车,选择APPLY,在命令行中输入10,5回车,OK;

12、设定网格密度

(1)Main Menu>Preprocessor>-Meshing->Size Cntrls>Picked Lines,选择线6和20,OK,在No.

of element divisions框中输入4,OK;

(2)Main Menu>Preprocessor>-Meshing->Size Cntrls>Picked Lines,选择线40,OK,在No. of

element divisions框中输入6,OK;

(3)Utility Menu>Select>Everything;

(4)Main Menu>Preprocessor>-Meshing->Size Cntrls>-Global->Size,在element edge length框

中输入0.4,OK;

13、划分网格:Main Menu>Preprocessor>-Meshing->Mesh>-Volumes->Mapped>4 to 6 sides,选择

Pick All;

14、定义求解类型及选项

(1)Main Menu>Solution>-Analysis Type->New Analysis,选择Steady-State; (2)Main Menu>Solution>-Analysis Options,选择Program-chosen; 15、施加对流载荷

(1)Utility Menu>WorkPlane>Change Active CS to>Global Cylindrical;

(2)Utility Menu>Select>Entities,选择Nodes, By location, X,在Min, Max框中输入ri1,OK; (3)Main Menu>Solution>-Loads->Apply>-Thermal->Convection>On Nodes,选择Pick All, 输

入250/144及450,OK;

16、在AREMOTE组上施加温度约束

(1)Utility Menu>Select>Comp/Assembly>Select Comp/Assembly,选aremote; (2)Utility Menu>Select>Entities,选择Nodes, Attached to, On the Area all, OK;

(3)Main Menu>Solution>-Loads->Apply>-Thermal->Temperature>On Nodes,选择Pick all,输

入45,OK;

17、施加与温度有关的对流边界条件

(1)Utility Menu>WorkPlane>Offset WP by Increments,在XY,YZ,ZX Angles框中输入

0,-90,OK;

(2)Utility Menu>WorkPlane>Local Coordinate Systems>Create Local CS>At WP Origin,在

Type of coordinate system菜单中,选择Cylindrical 1,OK;

(3)Utility Menu>Select Entities,选择Nodes, By location, X, 在Min, Max框中输入ri2,OK; (4)Main Menu>Solution>-Loads->Apply>-Thermal->Convection>On Nodes,选择Pick All,在

Film coefficient框中输入-2,在Bulk temperature框中输入100,OK;

(5)Utility Menu>Select>Everything;

(6)Utility Menu>PlotCtrls>Symbols,在Show pres and convect as菜单中选择Arrow, OK; (7)Utility Menu>Plot>Nodes; 18、恢复工作平面及坐标系统

(1)Utility Menu>WorkPlane>Change Active CS to>Global Cartesian; (2)Utility Menu>WorkPlane>Align WP with>Global Cartesian; 19、设定载荷步选项:

Main Menu>Solution>-Load Step Options->Time/Frequenc>Time and Substeps,在Number of

substeps框中输入50,设置Automatic time stepping为On;

20、求解:Main Menu>Solution>-Solve->Current LS

21、显示温度分布彩色云图: Main Menu>General Postproc>Plot Results>-Contour Plot->Nodal

Solu,选择Temperature TEMP。

《ANSYS Verification Manual》中关于稳态热分析的实例:

VM58 VM92 VM93 VM94 VM95 VM96 VM97 VM98 VM99

Centerline temperature of a heat generating wire Insulted wall temperature

Temperature dependent conductivity Heat generating plate

Heat transfer from a cooling spine

Temperature distribution in a short solid cylinder Temperature distribution along a straight fin Temperature distribution along a tapered fin Temperature distribution in a trapezoidal fin

VM100 VM101 VM102 VM103 VM105 VM108 VM118 VM160 VM161 VM162

Heat conductivity across a chimney section Temperature distribution in a short solid cylinder Cylinder with temperature dependent conductivity Thin plate with a central heat source

Heat generation coil with temperature dependent conductivity Temperature gradient across a solid cylinder Centerline temperature of a heat generating wire Solid cylinder with harmonic temperature load Heat flow from a insulated pipe

Cooling of a circular fin of rectangular profile