¸ßÈýÊýѧ-¡¾×îС¿±±¾©ÊÐÖصãÖÐѧ2018½ì¸ßÈý¾ÅÔÂÔ¿¼( ÏÂÔر¾ÎÄ

ÄÚÈÝ·¢²¼¸üÐÂʱ¼ä : 2024/12/26 19:51:36ÐÇÆÚÒ» ÏÂÃæÊÇÎÄÕµÄÈ«²¿ÄÚÈÝÇëÈÏÕæÔĶÁ¡£

±±¾©ÊÐÖصãÖÐѧ2018½ì¸ßÈý¶ÈµÚÒ»´ÎÔ¿¼Á·Ï°

¸ß Èý Êý ѧ£¨Àí£©2018.18

£¨²âÊÔʱ¼ä120·ÖÖÓ£©

Ò»¡¢Ñ¡ÔñÌ⣺±¾´óÌâ¹² 8 СÌ⣬ÿСÌâ 5 ·Ö£¬¹² 40 ·Ö. 1£®ÒÑÖª¼¯ºÏM={xxA£®?xx??2? C£®?x?1?x?2?

2?x?1?<4}£¬N??xÔò¼¯ºÏM?NµÈÓÚ £¨ £© ?0?£¬

?x?3?B£®?xx?3?

D£®x2?x?3

32??2£®ÃüÌâ¡°¶ÔÈÎÒâµÄx?R,x?x?1?0¡±µÄ·ñ¶¨ÊÇ £¨ £©

A.²»´æÔÚx?R,x?x?1?0 B.´æÔÚx?R,x?x?1?0 C.´æÔÚx?R,x?x?1?0 D. ¶ÔÈÎÒâµÄx?R,x?x?1?0

3£® Èç¹û¶ÔÓÚÈÎÒâʵÊýx£¬x±íʾ²»³¬¹ýxµÄ×î´óÕûÊý. ÀýÈç3.27?3£¬0.6?0. ÄÇô¡°x?y¡±ÊÇ¡°x?y?1¡±µÄ ( )

£¨A£©³ä·Ö¶ø²»±ØÒªÌõ¼þ £¨B£©±ØÒª¶ø²»³ä·ÖÌõ¼þ £¨C£©³ä·Ö±ØÒªÌõ¼þ £¨D£©¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

32323232???????????2x£¬ x?0£¬4. É躯Êýf(x)?? Èôf(x)ÊÇÆ溯Êý£¬Ôòg(2)µÄÖµÊÇ

x?0.?g(x)£¬£¨ £© A. ?5( )

A£®ÊÇÆ溯ÊýÇÒÔÚ(??,??)ÉÏÊÇÔöº¯Êý B£®ÊÇÆ溯ÊýÇÒÔÚ(??,??)ÉÏÊǼõº¯Êý C£®ÊÇżº¯ÊýÇÒÔÚ(??,??)ÉÏÊÇÔöº¯Êý D£®ÊÇżº¯ÊýÇÒÔÚ(??,??)ÉÏÊǼõº¯Êý 6£®ÒÑÖªf(x)?|log3x|£¬ÔòÏÂÁв»µÈʽ³ÉÁ¢µÄÊÇ

£¨ £©

11 B. ?4 C. D. 4 44£®

º¯

Êý

f(x)?x3?x(x?R)

111123433x?3y,N?(3)x?y,P?3xy£¨ÆäÖÐ0?x?y£©7£®ÉèM?£¬ ÔòM,N,P´óС¹ØϵΪ( ) 2A£®f()?f(2) B£®f()?f(3) C£®f()?f() D£®f(2)?f(3) £¨A£©M?N?P £¨B£©N?P?M £¨C£©P?M?N £¨D£©P?N?M

8£®ÔÚRÉ϶¨ÒåÔËËã?:x?y?x(1?y).Èô²»µÈʽ(x?a)?(x?a)?1¶ÔÈÎÒâʵÊýx³ÉÁ¢£¬

Ôò £¨ £©

A. ?1?a?1 C. ?B. 0?a?2 D. ?

13?a? 2231?a? 22¶þ¡¢Ìî¿ÕÌ⣺±¾´óÌâ¹² 6 СÌ⣬ÿСÌâ 5 ·Ö£¬¹² 30 ·Ö. °Ñ´ð°¸ÌîÔÚÌâÖкáÏßÉÏ . 9£®ÒÑÖªlog3x?2£¬Ôòx=__________£®

1210£®ÒÑÖªÃݺ¯Êýy?f(x)µÄͼÏó¹ý£¨4£¬2£©µã£¬Ôòf()?__________£®

11£®É輯ºÏM?{y|y?()x,x??0,???},N?{y|y?log2x,x??0,1?}£¬Ôò¼¯ºÏM?NÊÇ_______________________£®

121212. ½«2£¬()£¬22°´´Ó´óµ½Ð¡µÄ˳ÐòÅÅÁÐÓ¦¸ÃÊÇ £®

32312?1(?1?x?0)13£®¶¨ÒåÔÚRÉϵĺ¯Êýf(x)Âú×ãf(x?1)??f(x),ÇÒf(x)??£¬

?1(0?x?1)?

Ôòf(3)? £®

x14£®Èôº¯Êýf(x)?a?x?aÊÇ £®

(a?0ÇÒa?1)ÓÐÁ½¸öÁãµã£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§

Èý¡¢½â´ðÌ⣺±¾´óÌâ¹² 6 СÌ⣬¹² 80 ·Ö. ½â´ðӦд³öÎÄ×Ö˵Ã÷£¬Ö¤Ã÷¹ý³Ì»òÑÝËã²½Öè. 15£® É輯ºÏ

A?xx2?3x?2?0??£¬

B?xx2?ax?(a?1)?0??£¬

C?xx2?mx?2?0£¬ÈôA?B?A£¬A?C?C£¬

£¨I£©ÇóʵÊýaµÄÈ¡Öµ¼¯ºÏ£® £¨¢ò£©ÇóʵÊýmµÄÈ¡Öµ¼¯ºÏ£®

16£®£¨±¾Ð¡ÌâÂú·Ö14·Ö£©

ÒÑÖªº¯Êýf(x)?x|x?2|. £¨¢ñ£©Ð´³öf(x)µÄµ¥µ÷Çø¼ä£»

??

£¨¢ò£©½â²»µÈʽf(x)?3£»

£¨¢ó£©Éè0?a?2£¬Çóf(x)ÔÚ[0£¬a]ÉϵÄ×î´óÖµ. 17£®£¨±¾Ð¡ÌâÂú·Ö14·Ö£©

ÒÑÖªº¯Êýf(x)?x?ax?bx(a,b?R)µÄͼÏó¹ýµãP(1,2)£¬ÇÒÔÚµãP´¦µÄÇÐÏßбÂÊΪ8. £¨¢ñ£©Çóa,bµÄÖµ£»

£¨¢ò£©Çóº¯Êýf(x)µÄµ¥µ÷Çø¼ä£» 18£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£© ÒÑÖªº¯Êýf?x??x2?32a(x?0,a?R) x£¨I£©ÅжÏf?x?µÄÆæżÐÔ£¨Ö±½Óд³öÄãµÄ½áÂÛ£©

£¨II£©Èôf?x?ÔÚ?2,???ÊÇÔöº¯Êý£¬ÇóʵÊýaµÄ·¶Î§ 19£®ÒÑÖªº¯Êýf?x??x2e?ax,ÆäÖÐa?0£®

£¨I£©Çóf?x?µÄµ¥µ÷Çø¼ä£» £¨II£©Çóf?x?ÔÚ?1,2?ÉϵÄ×î´óÖµ

20.ÒÑÖªº¯Êýf(x)?log2(x?1)£¬µ±µã(x, y)ÊÇy?f(x)µÄͼÏóÉϵĵãʱ£¬µã(, x3y)ÊÇ2y?g(x)µÄͼÏóÉϵĵ㣮

£¨I£©Ð´³öy?g(x)µÄ±í´ïʽ£»

£¨II£©µ±g(x)?f(x)?0ʱ£¬ÇóxµÄÈ¡Öµ·¶Î§£»

£¨¢ó£©µ±xÔÚ£¨¢ò£©Ëù¸ø·¶Î§È¡ÖµÊ±£¬Çóg(x)?f(x)µÄ×î´óÖµ£®