内容发布更新时间 : 2024/11/16 6:01:09星期一 下面是文章的全部内容请认真阅读。
.
零极点对系统性能的影响分析
1任务步骤
1)分析原开环传递函数G0(s)的性能,绘制系统的阶跃响应曲线得到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间);
2)在G0(s)上增加零点,使开环传递函数为G1(s),绘制系统的根轨迹,分析系统的稳定性。绘制系统的阶跃响应曲线得到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间);
3)在G0(s)上增加极点,使开环传递函数为G2(s),绘制系统的根轨迹,分析系统的稳定性;绘制系统的阶跃响应曲线得到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间);
4)同时在G0(s)上增加零极点,使开环传递函数为G3(s),绘制系统的根轨迹,分析系统的稳定性;绘制系统的阶跃响应曲线得到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间);
5)综合数据,分析零极点对系统性能的影响。
.
.
2开环传递函数G0(s)的性能分析
2.1 原G0(s)性能分析
取原开环传函数为:G0(s)?1(s?0.25)(s?0.52)
2,1.1分析系统稳定性
在M指令中输入:
g0=zpk([],[-0.25,-0.52],[1]) g=feedback(g0,1); [z,p,k]=zpkdata(g,'v') 按Enter回车得: Zero/pole/gain: 1 ----------------- (s+0.25) (s+0.52) z =
Empty matrix: 0-by-1 p = -0.2500 -0.5200 k = 1
即闭环系统两个极点均具有负实部,系统稳定2.1.2系统的根轨迹
Matlab指令:
G0=zpk([],[-0.25,-0.52],[1]) g=feedback(g0,1);
.
.
rlocus(g) 得到图形:
根据原函数的根轨迹可得:
Root Locus543-1Imaginary Axis (seconds)210-1-2-3-4-5-0.9System: gGain: 0.101Pole: -0.385 + 1.04iDamping: 0.347Overshoot (%): 31.3Frequency (rad/s): 1.11System: gGain: 0.0369Pole: -0.385 - 1.01iDamping: 0.356Overshoot (%): 30.2Frequency (rad/s): 1.08-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.100.1Real Axis (seconds-1)
图1 原函数G0(s)的根轨迹
系统的两个极点分别是-0.52和-0.25,零点在无限远处。
2.1.3G0(s)的阶跃响应
Matlab指令:
g0=zpk([],[-0.25,-0.52],[1]) g=feedback(g0,1); step(g) 得到图形:
.
.
Step Response1.4System: gTime (seconds): 3.18Amplitude: 1.151.2System: gTime (seconds): 1.971Amplitude: 0.8880.8System: gTime (seconds): 11.3Amplitude: 0.887Amplitude0.60.40.2005Time (seconds)1015
图2 原函数的阶跃响应曲线
由阶跃响应曲线分析系统暂态性能: 曲线最大峰值为1.15,稳态值为0.887, 上升时间tr=1.97s 超调时间tp=3.18s 调节时间ts=11.3s,??2
?%超调量p=29.505%
2.2 增加零点后的开环传递函数G1(s)的性能分析
传递函数的表达式上单独增加一个零点S=-a,并改变a值大小,即离虚轴的距离,分析比较系统性能的变化。所以增加零点后为了分析开环传递函数的零点对系统性能的影响,现在在原开环的开环传递函数为:
s?a
(s?0.25)(s?0.52)2.2.1 当a分别为0.01,0.1,1,10,100时,G1(s)的根轨与阶跃响应如下excel
G(s)?.
.
a传递函数1magnaryAxs(seconds)1s?1s?0.1s?0.01s?10G(s)?G(s)?G(s)?G(s)?(s?0.25)(s?0.52)(s?0.25)(s?0.52)(s?0.25)(s?0.52)(s?0.25)(s?0.52) g0=zpk([-0.1],[-0.25,-0.52],[1])g=feedback(g0,1);[z,p,k]=zpkdata(g,'v') Zero/pole/gain: (s+0.1)-----------------(s+0.25) (s+0.52)z = -0.1000p = -1.6288 -0.1412k = 1.00000.010.110G(s)?100s?100(s?0.25)(s?0.52) g0=zpk([-0.01],[-0.25,-0.52],[1])M指令g=feedback(g0,1);[z,p,k]=zpkdata(g,'v') Zero/pole/gain: (s+0.01)-----------------(s+0.25) (s+0.52)z = -0.0100p = -1.6870 -0.0830k = 1.0000 g0=zpk([-1],[-0.25,-0.52],[1])g=feedback(g0,1);[z,p,k]=zpkdata(g,'v')Zero/pole/gain: (s+1)-----------------(s+0.25) (s+0.52)z = -1.0000p = -0.8850 + 0.5889i -0.8850 - 0.5889ik = 1.0000 g0=zpk([-10],[-0.25,-0.52],[1])g=feedback(g0,1);[z,p,k]=zpkdata(g,'v') Zero/pole/gain: (s+10)-----------------(s+0.25) (s+0.52)z = -10.0000p = -0.8850 + 3.0572i -0.8850 - 3.0572ik = 1.0000 g0=zpk([-100],[-0.25,-0.52],[1])g=feedback(g0,1);[z,p,k]=zpkdata(g,'v') Zero/pole/gain: (s+100)-----------------(s+0.25) (s+0.52)z = -100.0000p = -0.8850 + 9.9673i -0.8850 - 9.9673ik = 1.00001magnaryAxs(seconds))0.1 0-0.1-0.2-0.30System: gGain: 0.0165Pole: -1.65Damping: 1Overshoot (%): 0Frequency (rad/s): 1.65Imagnary Axs (seconds0.25magnaryAxs(seconds10.1magnaryAxs(second)s1)1AmpudeAmpudeAmpude 0.40.40.50.40.3AmpudeAmpudeσ%tr系统稳定性根轨迹阶跃响应暂态性能结果是否稳定M指令是g0=zpk([-0.01],[-0.25,-0.52],[1])g=feedback(g0,1);rlocus(g)Root Locus0.4是g0=zpk([-0.1],[-0.25,-0.52],[1])g=feedback(g0,1);rlocus(g)Root Locus0.40.3System: gGain: InfPole: -0.1Damping: 1Overshoot (%): 0Frequency (rad/s): 0.1是g0=zpk([-1],[-0.25,-0.52],[1])g=feedback(g0,1);rlocus(g)Root Locus0.8System: gGain: 0.0102Pole: -0.89 + 0.589iDamping: 0.834Overshoot (%): 0.87Frequency (rad/s): 1.07是g0=zpk([-10],[-0.25,-0.52],[1])g=feedback(g0,1);rlocus(g)Root Locus15是g0=zpk([-100],[-0.25,-0.52],[1])g=feedback(g0,1);rlocus(g)Root Locus1500.3System: gGain: InfPole: -0.01Damping: 1Overshoot (%): 0Frequency (rad/s): 0.01System: gGain: 0.00812Pole: -1.7Damping: 1Overshoot (%): 0Frequency (rad/s): 1.70.60.20.2100.4System: gGain: 1.43Pole: -1.6 - 0.00255iDamping: 1Overshoot (%): 0Frequency (rad/s): 1.6System: gGain: 152Pole: -1Damping: 1Overshoot (%): 0Frequency (rad/s): 10-0.1 System: gSystem: gGain: 37.5Gain: 1.06e+003Pole: -19.6 - 0.0474iPole: -10.1Damping: 1Damping: 1Overshoot (%): 0Overshoot (%): 0Frequency (rad/s): 19.6Frequency (rad/s): 10.1System: gGain: 0Pole: -0.885 + 3.06iDamping: 0.278Overshoot (%): 40.3Frequency (rad/s): 3.18100System: gSystem: gGain: 397Gain: InfPole: -200Pole: -100Damping: 1Damping: 1Overshoot (%): 0Overshoot (%): 0Frequency (rad/s): 200Frequency (rad/s): 10050System: gGain: 0.358Pole: -1.07 + 11.6iDamping: 0.0915Overshoot (%): 74.9Frequency (rad/s): 11.700-0.2-50-0.2-5-100-0.4-0.3-0.4-6-0.4-6-0.6-5-4-3-2-101Real Axis (seconds-1-10-150-400-350-300-250-200-150-100-50050Real Axis (seconds-1-5-4-3-2-101Real Axis (seconds-1-0.8-3.5-3-2.5-2-1.5-1-0.500.5Real Axis (seconds-1-15-40-35-30-25-20-15-10-505Real Axis (seconds-1) g0=zpk([-0.01],[-0.25,-0.52],[1])M指令g=feedback(g0,1);step(g)Step Response0.7g0=zpk([-0.1],[-0.25,-0.52],[1])g=feedback(g0,1);step(g)Step Response0.7System: gTime (seconds): 2.32Amplitude: 0.562System: gTime (seconds): 26.9Amplitude: 0.439g0=zpk([-1],[-0.25,-0.52],[1])g=feedback(g0,1);step(g)10.9System: g0.8Time (seconds): 1.98Amplitude: 0.8830.70.6System: gTime (seconds): 6.03Amplitude: 0.888System: gStep ResponseTime (seconds): 2.94Amplitude: 0.922g0=zpk([-10],[-0.25,-0.52],[1])g=feedback(g0,1);step(g)1.5System: gTime (seconds): 0.921Step ResponseAmplitude: 1.41g0=zpk([-100],[-0.25,-0.52],[1])g=feedback(g0,1);step(g)1.81.6System: gTime (seconds): 0.308Amplitude: 1.75Step Response0.6System: gTime (seconds): 2.02Amplitude: 0.5150.6System: gTime (seconds): 0.7820.5Amplitude: 0.4340.5System: gTime (seconds): 0.502Amplitude: 0.991System: gTime (seconds): 5.53Amplitude: 0.9891.4System: g1.2Time (seconds): 0.156Amplitude: 0.99810.80.6System: gTime (seconds): 5.56Amplitude: 0.9950.30.30.50.40.200.2System: gTime (seconds): 0.0757Amplitude: 0.0707System: gTime (seconds): 65.3Amplitude: 0.07390.20.20.1000.10.10123456700204060Time (seconds)8010012000123456701234567Time (seconds)051015Time (seconds)202530Time (seconds)Time (seconds)σ% tp(s)ts(s)tr(s)lga 596.89%1.9265.30.087-228.02%2.3927.10.79-13.83%2.996.01204.27%0.9215.60.5175%0.3165.520.1572 700.00`0.00P0.00@0.0000.00 0.000.00%0.00%图表标题系列1增加零点对系统影响 2.521.510.50系列1.