一元一次方程应用题归类汇集(实用) 下载本文

内容发布更新时间 : 2024/12/24 22:17:38星期一 下面是文章的全部内容请认真阅读。

(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3?年后具有相反意义的量)

(一)和、差、倍、分问题——读题分析法

这类问题主要应搞清各量之间的关系,注意关键词语。仔细读题,找出表示相等关系的关键字, 例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套??”,利用这些关键字列出

文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程. 1、倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率?”来体现。 2、多少关系:通过关键词语“多、少、和、差、不足、剩余??”来体现。 增长量=原有量×增长率 现在量=原有量+增长量

例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?

例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?

(二)等积变形问题

等积变形是以形状改变而体积不变为前提。

常用等量关系为:原料体积=成品体积。常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.

2①圆柱体的体积公式 V=底面积×高=S·h=?rh

②长方体的体积 V=长×宽×高=abc

例3.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?

(三)数字问题

1.要搞清楚数的表示方法:一个三位数,一般可设百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9),则这个三位数表示为:100a+10b+c.

2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n—1表示。

例4.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位

11

顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。

例5.一个2位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和比这个2位数的 大6,求这个2位数。

(四)商品利润问题(市场经济问题或利润赢亏问题)

(1)销售问题中常出现的量有:进价(或成本)、售价、标价(或定价)、利润等。 (2)利润问题常用等量关系:

商品利润=商品售价-商品进价=商品标价×折扣率-商品进价

商品售价-商品进价商品利润商品进价商品利润率=商品进价×100%=×100%

(3)商品销售额=商品销售价×商品销售量

商品的销售利润=(销售价-成本价)× 销售量

(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.即商品售价=商品标价×折扣率.

例5: 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

(五)行程问题——画图分析法

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

1.行程问题中的三个基本量及其关系:

路程=速度×时间 时间=路程÷速度 速度=路程÷时间 2.行程问题基本类型

(1)相遇问题: 快行距+慢行距=原距 (2)追及问题: 快行距-慢行距=原距

(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度

水流速度=(顺水速度-逆水速度)÷2

12

抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.

常见的还有:相背而行;行船问题;环形跑道问题。

例6:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? (2)两车同时开出,相背而行多少小时后两车相距600公里?

(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?

(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。)

例7: 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?

(六)工程问题

1.工程问题中的三个量及其关系为:

工作效率?工作总量工作总量工作时间?工作时间 工作效率

工作总量=工作效率×工作时间

2.经常在题目中未给出工作总量时,设工作总量为单位1。即完成某项任务的各工作量的和=总工作量=1.

工程问题常用等量关系:先做的+后做的=完成量.

例9:一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?

例10:一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙

13

管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?

(七)储蓄问题

1.顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.

2.储蓄问题中的量及其关系为:

利息=本金×利率×期数 本息和=本金+利息

利率?利息本金×100% 利息税=利息×税率(20%)

例11:某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)

(八)配套问题:

这类问题的关键是找对配套的两类物体的数量关系。

例12:某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?

例13:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?

(九)劳力调配问题

这类问题要搞清人数的变化,常见题型有: (1)既有调入又有调出;

(2)只有调入没有调出,调入部分变化,其余不变;

14

(3)只有调出没有调入,调出部分变化,其余不变。

例14.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?

例15.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。

例16:有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的 ,应从乙队调多少人到甲队?

(十)比例分配问题

比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。 常用等量关系:各部分之和=总量。

例14:甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?

例15:学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。

(十一)年龄问题

例17:兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?

例18:三位同学甲乙丙,甲比乙大1岁,乙比丙大2岁,三人的年龄之和事41,求乙同学的年龄。

(十二)比赛积分问题

例19:某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选

15

对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了 道题。

(十二)方案选择问题

例20.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,?经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是: 如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,?但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:

方案一:将蔬菜全部进行粗加工.

方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,?在市场上直接销售. 方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成. 你认为哪种方案获利最多?为什么?

(十四)古典数学

例21.100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚,多少小和尚。

例22.有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?

16