内容发布更新时间 : 2025/1/3 17:30:37星期一 下面是文章的全部内容请认真阅读。
电池基本知识及生产控制
二、电芯的构造
电芯的正极是LiCoO2加导电剂和粘合剂,涂在铝箔上形成正极板,负极是层状石墨加导电剂及粘合剂涂在铜箔基带上,目前比较先进的负极层状石墨颗粒已采用纳米碳。
根据上述的反应机理,正极采用LiCoO2、LiNiO2、LiMn2O2,其中LiCoO2本是一种层结构很稳定的晶型,但当从LiCoO2拿走XLi后,其结构可能发生变化,但是否发生变化取决于X的大小。通过研究发现当X>0.5时Li1-XCoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的压倒终结。所以电芯在使用过程中应通过限制充电电压来控制Li1-XCoO2中的X值,一般充电电压不大于4.2V那么X小于0.5 ,这时Li1-XCoO2的晶型仍是稳定的。负极C6其本身有自己的特点,当第一次化成后,正极LiCoO2中的Li被充到负极C6中,当放电时Li回到正极LiCoO2中,但化成之后必须有一部分Li留在负极C6中心,以保证下次充放电Li的正常嵌入,否则电芯的压倒很短,为了保证有一部分Li留在负极C6中,一般通过限制放电下限电压来实现。所以锂电芯的安全充电上限电压≤4 .2V,放电下限电压≥2.5V。 三、电芯的安全性
电芯的安全性与电芯的设计、材料及生产工艺生产过程的控制等因素密切相关。在电芯的充放电过程中,正负极材料的电极电位均处于动态变化中,随着充电电压的增高,正极材料(LixCoO2)电位不断上升,嵌锂的负极材料(LixC6)电位首先下降,然后出现一个较长的电位平台,当充电电压过高( >4.2V)或由于负极活性材料面密度相对于正极材料面密度(C/A)比值不足时,负极材料过度嵌锂,负极电位则迅速下降,使金属锂析出(正常情况下则不会有金属锂的的析出),这样会对电芯的性能及安全性构成极大的威胁。
在材料已定的情况下,C/A太大,则会出现上述结果。相反,C/A太小,容量低,平台低,循环特性差。这样,在生产加工中如何保证设计好的C/A比成了生产加工中的关键。所以在生产中应就以下几个方面进行控制: 1.负极材料的处理
1)将大粒径及超细粉与所要求的粒径进行彻底分离,避免了局部电化学反应过度激烈而产生负反应的情况,提高了电芯的安全性。 2)提高材料表面孔隙率,这样可以提高10%以上的容量,同时在C/A 比不变的情况下,安全性大大提高。处理的结果使负极材料表面与电解液有了更好的相容性,促进了SEI膜的形成及稳定上。 2.制浆工艺的控制
1)制浆过程采用先进的工艺方法及特殊的化学试剂,使正负极浆料各组之间的表面张力降到了最低。提高了各组之间的相容性,阻止了材料在搅拌过程“团聚”的现象。
2)涂布时基材料与喷头的间隙应控制在0.2mm以下,这样涂出的极板表面光滑无颗粒、凹陷、划痕等缺陷。
3)浆料应储存6小时以上,浆料粘度保持稳定,浆料内部无自聚成团现象。均匀的浆料保证了正负极在基材上分布的均匀性,从而提高了电芯的一致性、安全性。 3.采用先进的极片制造设备
1)可以保证极片质量的稳定和一致性,大大提高电芯极片均一性,降低了不安全电芯的出现机率。 2)涂布机单片极板上面密度误差值应小于±2%,极板长度及间隙尺寸误差应小于2mm。
3)辊压机的辊轴锥度和径向跳动应不大于4μm,这样才能保证极板厚度的一致性。设备应配有完善的吸尘系统,避免因浮尘颗粒而导致的电芯内部微短路,从而保证了电芯的自放电性能。
4)分切机应采用切刀为辊刀型的连续分切设备,这样切出的极片不存在荷叶边,毛刺等缺陷。同样设备应配有完善的吸尘系统,从而保证了电芯的自放电性能。 4.先进的封口技术
目前国内外方形锂离子电芯的封口均采用激光(LASER)熔接封口技术,它是利用YAG棒(钇铝石榴石)激光谐振腔中受强光源(一般为氮灯)的激励下发出一束单一频率的光(λ=1.06mm)经过谐振折射聚焦成一束,再把聚焦的焦点对准电芯的筒体和盖板之间,使其熔化后亲 合为一体,以达到盖板与筒体的密封熔合的目的。为了达到密封焊,必须掌握以下几个要素: 1)必须有能量大、频率高、聚焦性能好、跟踪精度高的激光焊机。 2)必须有配合精度高的适用于激光焊的电芯外壳及盖板。
3)必须有高统一纯度的氮气保护,特别是铝壳电芯要求氮气纯度高,否则铝壳表面就会产生难以熔化的Al2O3(其熔点为2400℃)。 四、电芯膨胀原因及控制
锂离子电芯在制造和使用过程中往往会有肿胀现象,经过分析与研究,发现主要有以下两方面原因: 1.锂离子嵌入带来的厚度变化
电芯充电时锂离子从正极脱出嵌入负极,引起负极层间距增大,而出现膨胀,一般而言,电芯越厚,其膨胀量越大。 2.工艺控制不力引起的膨胀
在制造过程中,如浆料分散、C/A比离散性、温度控制都会直接影响电芯电芯的膨胀程度。特别是水,因为充电形成的高活性锂碳化合
物对水非常 敏感,从而发生激烈的化学反应。反应产生的气体造成电芯内压升高,增加了电芯的膨胀行为。所以在生产中,除了应对极板严格除湿外,在注液过程中更应采用除湿设备,保证空气的干燥度为HR2%,露点(大气中的湿空气由于温度下降,使所含的水蒸气达到饱和状态而开始凝结时的温度)小于-40℃。在非常干燥的条件下,并采取真空注液,极大地降低了极板和电解液的吸水机率。 五、铝壳电芯与钢壳电芯安全性比较
铝壳相对于钢壳具有很高的安全优势,以下是不同的压力实验:
注:压力是电芯压力为电芯内部之压力(单位:Kg),表内数据为电芯之厚度(单位:mm)由此可见钢壳对内压反映十分迟钝,而铝壳对内压反应却十分敏锐。因此从厚度上就基本能判断出电芯的内压,而钢壳电芯往往隐含着内压带来的不安全隐患。其中钢壳电芯型号为063448。
第三节 锂离子电池保护线路(PCM)
由第二节锂离子电芯的知识我们可以看出,锂离子电池至少需要三重保护-----过充电保护,过放电保护,短路保护,那么就应而产生了其保护线路,那么这个保护线路针对以上三个保护要求而言:
过充电保护: 过充电保护 IC 的原理为:当外部充电器对锂电池充电时,为防止因温度上升所导致的内压上升,需终止充电状态。此时,保护 IC 需检测电池电压,当到达 4.25V 时(假设电池过充点为 4.25V)即启动过度充电保护,将功率 MOS 由开转为切断,进而截止充电。
过放电保护: 过放电保护 IC 原理:为了防止锂电池的过放电,假设锂电池接上负载,当锂电池电压低于其过放电电压检测点(假定为 2.5V)时将启动过放电保护,使功率 MOSFET 由开转变为切断而截止放电,以避免电池过放电现象产生,并将电池保持在低静态电流的待机模式,此时的电流仅 0.1uA。 当锂电池接上充电器,且此时锂电池电压高于过度放电电压时,过度放电保护功能方可解除。另外,考虑到脉冲放电的情况,过放电检测电路设有延迟时间以避免产生误动作。
过放电保护及过充电保护IC主要生产厂家有:美上美(MITSUMI),精工,台湾富晶(DW01,FS301,302),理光,MOTOROLA等封装形式主要为SOT26,SOT6 过电流及短路电流
因为不明原因(放电时或正负极遭金属物误触)造成过电流或短路,为确保安全,必须使其立即停止放电。 过电流保护 IC 原理为,当放电电流过大或短路情况产生时,保护 IC 将启动过(短路)电流保护,此时过电流的检测是将功率 MOSFET 的 Rds(on) 当成感应阻抗用以监测其电压的下降情形,如果比所定的过电流检测电压还高则停止放电,运算公式为: V- = I × Rds(on) × 2(V- 为过电流检测电压,I 为放电电流)。 假设 V- = 0.2V,Rds(on) = 25mΩ,则保护电流的大小为 I = 4A。 同样地,过电流检测也必须设有延迟时间以防有突发电流流入时产生误动作。
通常在过电流产生后,若能去除过电流因素(例如马上与负载脱离),将会恢复其正常状态,可以再进行正常的充放电动作。
三、 电池不良项目及成因: 1.容量低 产生原因:
a. 附料量偏少; b. 极片两面附料量相差较大; c. 极片断裂; d. 电解液少; e. 电解液电导率低; f. 正极与负极配片未配好;
g. 隔膜孔隙率小; h. 胶粘剂老化→附料脱落; i.卷芯超厚(未烘干或电解液未渗透) j. 分容时未充满电; k. 正负极材料比容量小。 2.内阻高 产生原因:
a. 负极片与极耳虚焊; b. 正极片与极耳虚焊; c. 正极耳与盖板虚焊; d. 负极耳与盖帽虚焊; e. 铆钉与压板接触内阻大; f. 正极未加导电剂; g. 电解液锂盐含量低; h. 电池曾经发生短路; i. 隔膜纸孔隙率小。 3.电压低 产生原因:
a. 副反应(电解液分解;正极有杂质;有水); b. 未化成好(SEI膜未形成安全);
c. 客户的线路板漏电(指客户加工后送回的电芯); d. 客户未按要求点焊(客户加工后的电芯); e. 毛刺; f. 微短路; g. 负极产生枝晶。 4.超厚
产生超厚的原因有以下几点:
a. 焊缝漏气; b. 电解液分解; c. 未烘干水分; d. 盖帽密封性差; e. 壳壁太厚; f. 壳太厚; g. 卷芯太厚(附料太多;极片未压实;隔膜太厚)。 5.成因有以下几点
a. 未化成好(SEI膜不完整、致密); b. 烘烤温度过高→粘合剂老化→脱料; c. 负极比容量低; d. 正极附料多而负极附料少; e. 盖帽漏气,焊缝漏气; f. 电解液分解,电导率降低。 6.爆炸
a. 分容柜有故障(造成过充); b. 隔膜闭合效应差; c. 内部短路 7.短路
a. 料尘; b. 装壳时装破; c. 毛刺; d. 卷绕不齐; e. 没包好; f. 隔膜有洞; 8.断路
a) 极耳与铆钉未焊好,或者有效焊点面积小;
b) 连接片断裂(连接片太短或与极片点焊时焊得太靠下)
四、 各工序控制重点 (一) 配料: 1.溶液配制:
a) PVDF(或CMC)与溶剂NMP(或去离子水)的混合比例和称量; b) 溶液的搅拌时间、搅拌频率和次数(及溶液表面温度);
c) 溶液配制完成后,对溶液的检验:粘度(测试)\\溶解程度(目测)及搁置时间; d) 负极:SBR+CMC溶液,搅拌时间和频率。 2.活性物质:
a) 称量和混合时监控混合比例、数量是否正确;
b) 球磨:正负极的球磨时间;球磨桶内玛瑙珠与混料的比例;玛瑙球中大球与小球的比例; c) 烘烤:烘烤温度、时间的设置;烘烤完成后冷却后测试温度。 d) 活性物质与溶液的混合搅拌:搅拌方式、搅拌时间和频率。 e) 过筛:过100目(或150目)分子筛。 f) 测试、检验:
对浆料、混料进行以下测试:固含量、粘度、混料细度、振实密度、浆料密度。 (二)涂布 1.集流体的首检:
a) 集流体规格(长宽厚)的确认; b) 集流体标准(实际)重量的确认;
c) 集流体的亲(疏)水性及外观(有无碰伤、划痕和破损)。 2.敷料量(标准值、上、下限值)的计算:
a) 单面敷料量(以接近此标准的极片厚度确定单面厚度); b) 双面敷料量(以最接近此标准的极片厚度确定双面的极片厚度。) 3.浆料的确认:是否过稠(稀)\\流动性好,是否有颗粒,气泡过多,是否已干结. 4.极片效果:
a) 比重(片厚)的确认;
b) 外观:有无划线、断带、结料(滚轮或极片背面)是否积料过厚,是否有未干透或烤焦,有无露铜或异物颗粒; 5.裁片:规格确认有无毛刺,外观检验。 (三)制片(前段): 1.压片:
a) 确认型号和该型号正、负极片的标准厚度;
b) 最高档次极片压片后(NO.1或NO.1及NO.2)的厚度、外观有无变形、起泡、掉料、有无粘机、压叠。 c) 极片的强度检验; 2.分片:
a) 刀口规格、大片极片的规格(长宽)、外观确认; b) 分出的小片宽度;
c) 分出的小片有无毛刺、起皱、或裁斜、掉料(正)。 3.分档称片: a) 称量有无错分;
b) 外观检验:尺寸超差(极片尺寸、掉料、折痕、破损、浮料、未刮净等)。 4.烘烤:
a) 烤箱温度、时间的设置;
b) 放N2、抽真空的时间性效果(目测仪表)及时间间隔。 (四)制片后段:
1.铝带、镍带的长度、宽度、厚度的确认; 2.铝带、镍带的点焊牢固性;
3.胶纸必须按工艺要求的公差长度粘贴; 4.极片表面不能有粉尘。