内容发布更新时间 : 2024/11/2 17:28:45星期一 下面是文章的全部内容请认真阅读。
16??11?,则t___时,方程组有唯一解.
A??0?132????00t?10??正确答案:??1
17.设齐次线性方程组Am?nXn?1?Om?1,且r(A) = r < n,则其一般解中的自由未知量的个数等于 . 正确答案:n – r
18.线性方程组AX=b的增广矩阵A化成阶梯形矩阵后为
0??1201?
A??042?11????0000d?1??则当d= 时,方程组AX=b有无穷多解.
正确答案:-1
19. 已知齐次线性方程组AX=O中A为3?5矩阵,则r(A)? . 正确答案:3
20.函数f?x??正确答案:x?0
21.若
1的间断点是 . 1?ex?f?x?dx?2x?2x2?C,则
f?x?? .
正确答案:2ln2?4x
三、微积分计算题 1.已知=2sinx,求y?.
解:由导数运算法则和复合函数求导法则得
x2xy??(2xsinx2)??(2x)?sinx2?2x(sinx2)?
?2xln2sxi2n?x2xc2oxs2? ()=2xln2sinx2+2x2xcosx2
2.设y=cos2-sinx,求y?. 解;y???sin22ln2?2xcosx 3.设y=lnx+e2-3xxx2x2,求y?.
解:由导数运算法则和复合函数求导法则得
y??(ln2x)??(e?3x)?=4.设y=esinx2lnx-3e-3x x+tanx,求dy.
解:由导数运算法则和复合函数求导法则得
dy=d(esinx+tanx)
=d(seixn+)d(txa n) =esixnd(sixn+1c)o2sxx d =esixncoxsxd+1co2sxxd =(esinxcosx+1cos2x)dx
5.
?e210x1?lnxdx
2解:
?e11x1?lnxdx=?e2111?lnxd(1?lnx)
2 =21+lnxe1=2(3-1)
sin16.计算
?xx2dx
sin1解
?xx2dx???sin1xd(1x)?cos1x?c
2x7.计算?dxx
解
?2xdxx?2?2xd(x?)2xln22?c
8.计算?xsinxdx 解
?xsinxdx??xcosx??coxsx?d?xco?xs9.计算?(x?1)lnxdx
?(x?1)lnxdx=11(x?1)2解 22(x?1)lnx?2?xdx =12(x2+2x)lnx-x24-x+c 1 10.计算
?2ex1x2dx 1x21121解
?2exxx2dx=??1ed(11x)??e?e?e2
1s?
xinc 11.
?e211dx
x1?lnxe211dx=?d(1?lnx)
1x1?lnx1?lnx解
?e21=21?lnx 12.
e21=2(3-1)
?π20xcos2xdx
221111xcos2xdx=xsin2x-?2sin2xdx =cos2x=-
2202400????解:13.
?20?e?10ln(x?1)dx
e?10?e?10ln(x?1)dx?xln(x?1)e-10??e?10e?1x1dx =e?1??(1?)dx
0x?1x?1=e-1-[x-ln(x+1)]
四、代数计算题
=lne=1
?1?10??1?????-11.设矩阵A??121,B?2,求AB.
???????223???5??解:因为
?1?10100??1?10100????? ?121010?011110 ??????223001????043?201???1?1???01??00?1?1???01??000100?1110???100?4?31??1?6?41???
??010?5?31??0100???00164?1???0?5?31?164?1????4?31????1即 A??5?31
????64?1????4?31??1???5????????1所以 AB??5?312??6
????????64?1????5????9??
?0?1?3???2.设矩阵A??2?2?7,I是3阶单位矩阵,求(I-A)-1. ?????3?4?8??解:由矩阵减法运算得
?100??0?1?3??113?????2?2?7???237?
I?A??010????????001?????3?4?8????349??利用初等行变换得
?113100??113100??237010???011?210? ??????349001????010?301???113100??110?2?33??1001?32???????010?301?
1 ?011?210?010?30?????????00111?1???00?1?1?11????00111?1???1?3??10即 (I?A)??3??1??12?? 1???1?63?10?2???12?,计算(AB)-1.
3. 设矩阵 A =?,B =????1?20???41???63??10?2???=??21?
12解 因为AB =?????4?1?1?20???41?????1???20?1?1??10??2110???2110?? (AB I ) =? ????2????01214?1010121???????012?1-所以 (AB)1= ?2??24.解矩阵方程?1?2? ?1?1?2? ?1???2?3???1?。 X?????34??2??1??2?3???1???2?3???1?X?解:由?,得X??34??2? ????????34??2???2?310??1?3401???3????1111??1??????01?31??0所以,
111?401??
043?1?3?3????2?3???1??43???1??2?X??????? ???????34??2???3?2??2???1??1?2x3?x4?0?x1?5.求线性方程组??x1?x2?3x3?2x4?0的一般解.
?2x?x?5x?3x?034?12 解:因为系数矩阵
?102?1??102?1??102?1????01?11???01?11?
A???11?32?????????0000???2?15?3????0?11?1???x1??2x3?x4所以一般解为?(其中x3,x4是自由元) 6.当?取何值时,线性方程组
x?x?x34?2x1?x2?x3?1??2x1?x2?4x3?? 有解?并求一般解. ???x?5x3?1?1解 因为增广矩阵
1??1111??111?10?5?1????0?1?6??2???0162?
A??21?4??????????2???1051???016??000???所以,当?=0时,线性方程组有无穷多解,且一般解为:
?x1?5x3?1 ? (x3是自由未知量〕
x??6x?23?2
五、应用题
1. 投产某产品的固定成本为36(万元),且边际成本为C?(x)?2x?40(万元/百台)。试求产量由4百台增至6百台时总成本的增量,及产量多少时,可使平均成本达到最低?
解: 当产量由4百台增至6百台时,总成本的增量为
?C(x)??(2x?40)dx??x2?40x?64?100(万元)
46?又C(x)??x0C?(x)dx?c0xx2?40x?3636??x?40?
xx令C(x)?1?36?0,解得x=6。 2x2.已知某产品的边际成本C?(q)?4q?3(万元/百台),q为产量(百台),固定成本为18(万元),求最低平均成本.
解:总得成本函数为
C??C?(q)dq??(4q?3)dq?2q2?3q?18