银行家算法的模拟实现 下载本文

内容发布更新时间 : 2025/1/23 8:39:17星期一 下面是文章的全部内容请认真阅读。

银行家算法的模拟实现 (实验三)

一、设计目的

1、了解多道程序系统中,多个进程并发执行的资源分配。

2、掌握死锁的产生的原因、产生死锁的必要条件和处理死锁的基本方法。 3、掌握预防死锁的方法,系统安全状态的基本概念。

4、掌握银行家算法,了解资源在进程并发执行中的资源分配策略。 5、理解死锁避免在当前计算机系统不常使用的原因。

二、设计任务

① 在Windows7系统的VS环境下运行程序;

② 通过最有代表性的避免死锁的算法(Dijkstra)的银行家算法程序实现来理解进程并发中的资源分配,死锁避免在死锁解决中的可行性;

③ 设计程序在自动、手动方式下运行,理解银行家算法的实质。 三、设计内容与步骤

A、银行家算法设计的知识准备。

1、死锁概念。在多道程序系统中,虽可借助于多个进程的并发执行,来改善系统的资源利用率,提高系统的吞吐量,但可能发生一种危险━━死锁。所谓死锁(Deadlock),是指多个进程在运行中因争夺资源而造成的一种僵局(Deadly_Embrace),当进程处于这种僵持状态时,若无外力作用,它们都将无法再向前推进。一组进程中,每个进程都无限等待被该组进程中另一进程所占有的资源,因而永远无法得到的资源,这种现象称为进程死锁,这一组进程就称为死锁进程。 2、关于死锁的一些结论:

参与死锁的进程最少是两个

(两个以上进程才会出现死锁) 参与死锁的进程至少有两个已经占有资源 参与死锁的所有进程都在等待资源

参与死锁的进程是当前系统中所有进程的子集

注:如果死锁发生,会浪费大量系统资源,甚至导致系统崩溃。 3、资源分类。 永久性资源:

可以被多个进程多次使用(可再用资源) 可抢占资源 不可抢占资源

临时性资源:只可使用一次的资源;如信号量,中断信号,同步信号等(可消耗性资源) “申请--分配--使用--释放”模式

4、产生死锁的四个必要条件:互斥使用(资源独占)、不可强占(不可剥夺)、请求和保持(部分分配,占有申请)、循环等待。

1) 互斥使用(资源独占)

一个资源每次只能给一个进程使用

2) 不可强占(不可剥夺)

资源申请者不能强行的从资源占有者手中夺取资源,资源只能由占有者自愿释放 3) 请求和保持(部分分配,占有申请)

一个进程在申请新的资源的同时保持对原有资源的占有(只有这样才是动态申请,动态分配) 4) 循环等待

存在一个进程等待队列 {P1 , P2 , … , Pn},

其中P1等待P2占有的资源,P2等待P3占有的资源,…,Pn等待P1占有的资源,形成一个进程等待环路

5、 死锁的解决方案 5.1 产生死锁的例子

申请不同类型资源产生死锁 P1: … 申请打印机 申请扫描仪 使用 释放打印机 释放扫描仪 … P2: … 申请扫描仪 申请打印机 使用 释放打印机 释放扫描仪 …

申请同类资源产生死锁(如内存)

设有资源R,R有m个分配单位,由n个进程P1,P2,…,Pn(n > m)共享。假设每个进程对R的申请和释放符合下列原则: * 一次只能申请一个单位 * 满足总申请后才能使用 * 使用完后一次性释放 m=2,n=3

资源分配不当导致死锁产生 5.2死锁预防:

定义:在系统设计时确定资源分配算法,保证不发生死锁。具体的做法是破坏产生死锁的四个必要条件之一 ①破坏“不可剥夺”条件

在允许进程动态申请资源前提下规定,一个进程在申请新的资源不能立即得到满足而变为等待状态之前,必须释放已占有

的全部资源,若需要再重新申请 ②破坏“请求和保持”条件

要求每个进程在运行前必须一次性申请它所要求的所有资源,且仅当该进程所要资源均可满足时才给予一次性分配

③破坏“循环等待”条件 采用资源有序分配法:

把系统中所有资源编号,进程在申请资源时必须严格按资源编号的递增次序进行,否则操作系统不予分配 6.安全状态与不安全状态 安全状态:

如果存在一个由系统中所有进程构成的安全序列P1,…Pn,则系统处于安全状态。一个进程序列{P1,…,Pn}是安全的,如果对于每一个进程Pi(1≤i≤n),它以后尚需要的资源量不超过系统当前剩余资源量与所有进程Pj (j < i )当前占有资源量之和,系统处于安全状态 (安全状态一定是没有死锁发生的) 不安全状态:不存在一个安全序列,不安全状态一定导致死锁。 B、银行家算法

一、银行家算法中的数据结构 1.可利用资源向量Available

它是一个含有m个元素的数组,其中的每一个元素代表一类可利用的资源数目,其初始值是系统中所配置的该类全部可用资源数目。其数值随该类资源的分配和回收而动态地改变。如果Available[j]=K,则表示系统中现有Rj类资源K个。 2.最大需求短阵Max

这是—个n×m的矩阵,它定义了系统中n个进程中的每一个进程对m类资源的最大需求。如果Max(i,j)=K,表示

进程i需要Rj类资源的最大数目为K。 3.分配短阵Allocation

这是一个n×m的矩阵,它定义了系统中每一类资源当前已分配给每个进程的资源数。如果Allocation(i,j)=K,表示

进程i当前已分得Rj类资源的数目为K。 4.需求矩阵Need

它是一个n×m的矩阵,用以表示每一个进程尚需的各类资源数,如果Need[i,j]=K,则表示进程i还需要Rj类资源k

个,方能完成其任务。 上述三个矩阵间存在下述关系: Need[i,j]=Max[i,j]-Allocation[i,j] 二、银行家算法

设Requesti是进程Pi的请求向量。如果Requesti[j]=k,表示进程只需要k个Rj类型的资源。当Pi发出资源请求后,系统按下述步骤进行检查:

(1)如果 Requesti[j]<=Need[i,j],则转向步骤2;否则,认为出错,因为它所需要的资源数已超过它所宣布的最大值。 (2)如果Requesti[j]<=Available[j] ,则转向步骤3;否则,表示系统中尚无足够的资源,Pi必须等待。 (3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的数值:

Available[j]:=Available[j]-Requesti[j]; Allocation[i,j]:=Allocation[i,j]+Requesti[j]; Need[i,j]:=Need[i,j]-Requesti[j];

(4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。若安全,才正式将资源分配给进程Pi,以完成本次分配;否则,将试探分配作废,恢复原来的资源分配状态,让进程Pi等待。 三、安全性算法

系统所执行的安全性算法可描述如下: (1)设置两个向量

①、工作向量Work。它表示系统可提供给进程继续运行所需要的各类资源数目,它含有m个元素,执行安全算法开始时,Work = Available。

②、Finish。它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]:=false ;当有足够资源分配给进程时,令 Finish[i]:=true。

(2)从进程集合中找到一个能满足下述条件的进程:

①、Finish[i]=false; ②、Need[i,j]<=Work[j];如找到,执行步骤(3);否则,执行步骤(4)。 (3)当进程Pi获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行: