信息光学习题答案 - 图文 下载本文

内容发布更新时间 : 2024/12/23 7:23:04星期一 下面是文章的全部内容请认真阅读。

信息光学习题答案

第一章 线性系统分析

1.1 简要说明以下系统是否有线性和平移不变性. (1)g?x??df?x?; (2)g?x???f?x?dx; dx?(3)g?x??f?x?; (4)g?x??????f????h?x????d?;

2(5)

???f???exp??j2????d?

解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。 1.2 证明comb(x)exp(j?x)?comb(x) ???comb????x??x??1?证明:左边=comb???????n?????(x?2n)??2??(x?2n)

?2?n????2?n????2?n??????x??2?右边?comb(x)?comb(x)exp(j?x)?

??n?????(x?n)??exp(j?x)?(x?n)n?????n??????(x?n)??exp(jn?)?(x?n)n????

n?????(x?n)??(?1)n???n?(x?n)?当n为奇数时,右边=0,当n为偶数时,右边=2所以当n为偶数时,左右两边相等。

n?????(x?2n)

(x) 1.3 证明??(sin?x)?comb证明:根据复合函数形式的δ函数公式

?[h(x)]??i?1n?(x?xi)h?(xi),h?(xi)?0

式中xi是h(x)=0的根,h?(xi)表示h(x)在x?xi处的导数。于是

??(sin?x)??n?????(x?n)???comb(x)

1

1.4 计算图题1.1所示的两函数的一维卷积。

解:设卷积为g(x)。当-1≤x≤0时,如图题1.1(a)所示, g(x)??1?x0(1??)(1?x??)d??111?x?x3 326

图题1.1

当0 < x ≤1时,如图题1.1(b)所示, g(x)??1x(1??)(1?x??)d??111?x?x3 32613?11?x?x,?326?13?11即 g(x)???x?x,6?32?0,??1.5 计算下列一维卷积。 (1)?(2x?3)?rect??1?x?00?x?1 其它?x?1??x?1??x?1?? (2)rect???rect?? 222??????(x)?rect(x) (3)comb解:(1)?(2x?3)?rect?3??x?1?1??x?1?1?x?2.5?????x???rect???rect??

2??2?2??2?2?2?x?2(2)设卷积为g(x),当x≤0时,如图题1.2(a)所示, g(x)??0d??x?2

当0 < x时,如图题1.2(b)所示

2

图题1.2

g(x)??d??2?x

x2?x?1?2,x?0 g(x)?2?x?1?,x?0?2即 g(x)?2???

?x??2?(x)?rect(x)?1 (3)comb1.6 已知exp(??x2)的傅立叶变换为exp(???2),试求

(1)?exp?x2?? (2)?exp?x2/2?2解:设y???????????

?x,z??? 即 ??exp(??y2)??exp(???2)

1????F?,? 得 ab?ab?2由坐标缩放性质??f(ax,by)??(1)?exp?x2???????exp(?y2/???exp(??z2)??exp(??2?2)

2?(2)?exp?x/2???2?????exp??y?/2??2

???2??exp(?2??2z2)?2??exp(?2??2?2)

1.7 计算积分.(1)

????sinc?x?dx??

4(2)

??2?x?cos?xdx?? sinc?解:应用广义巴塞伐定理可得

? (1)sinc(x)sinc(x)dx?????2222 ?(?)?(?)d??(1??)d??(1??)d??????103??021???1?1?1????(2)?sinc(x)cos?xdx????(?)?????d????(?)?????d??

2???2?2????????2 ?1??1??1??1??????????? 2??2??2??21.8 应用卷积定理求f?x??sinc?x?sinc?2x?的傅里叶变换.

3

解:??sinc(x)sinc(2x)????sinc(x)????sinc(2x)??1???rect(?)?rect?? 2?2?当?31????时,如图题1.3(a)所示, 2211??3 G(?)??2du???

2?12当?11???时,如图题1.3(b)所示, 2211??2 G(?)??1du?1

2??2当

13???时,如图题1.3(c)所示, 22113 G(?)??1du???

2??222G(ξ)的图形如图题1.3(d)所示,由图可知 G(?)?3???1?????????? 4?3/2?4?1/2?

图题1.3

4

1.9 设f?x??exp??x,??0,求 ??f?x???? 解:?exp(??x)???????f?x?dx??

?0???0??exp(?x)exp(?j2??x)dx??exp(??x)exp(?j2??x)dx

?2? ?2??(2??)2???exp(??x)dx?2??2?(2??)2???02?

1.10 设线性平移不变系统的原点响应为h?x??exp??x?step?x?,试计算系统对阶跃函数step?x?的响应.

解:由阶跃函数定义

step(x)??线性平移不变系统的原点响应为

h?x??exp??x?step?x??exp??x?,所以系统对解阶跃函数step?x?的响应为 g(x)?step(x)?h(x)??1,?0,x?0 得 x?0x?0

??0exp[?(x??)]d??1?exp(?x),x?0

1.11 有两个线性平移不变系统,它们的原点脉冲响应分别为h1?x??sinc?x?和

h2?x??sinc?3x?.试计算各自对输入函数f?x??cos2?x的响应g1?x?和g2?x?.

解:

1.12 已知一平面波的复振幅表达式为

U(x,y,z)?Aexp[j(2x?3y?4z)] 试计算其波长λ以及沿x,y,z方向的空间频率。

解:设平面波的复振幅的表达式可以表示成以下形式

U(x,y,z)?aexp(jk?r)?aexp[jk(xcos??ycos??zcos?)]

5