内容发布更新时间 : 2024/11/20 10:25:25星期一 下面是文章的全部内容请认真阅读。
3.1.2用二分法求方程的近似解
本节课选自《普通高中课程标准实验教科书·必修1》(人教A版)第三章《函数的应用》第一节《函数与方程》第二小节《用二分法求方程的近似解》. 一、教学背景分析 1.教学内容分析
函数与方程是中学阶段研究的重要数学模型,本节课是学生在系统学习了集合、函数的概念及性质以及基本初等函数(I)之后,研究函数与方程关系的内容,是《函数与方程》一节的重点.
二分法是数值计算中最简单常用的一种方法.本节课学生通过对具体实例的探究,借助图形计算器用二分法求相应函数零点的近似解,经历用函数的观点看方程的思维过程,在问题的解决中突出函数的应用,深化对函数与方程联系的理解,初步形成用函数观点处理问题的意识,这是本节课的一条明线;总结“用二分法求函数零点的步骤”中渗透算法的思想,发展学生的数学抽象能力,是本节课的一条暗线.这也是研究程序性知识的一条主线.
图形计算器可以实现求方程的近似解,但是内置的程序是由人设计的,并且“二分法”的产生要远远早于计算器,因此对于此内容的学习是十分必要的:我们要“教”计算器如何求解. 2.学生学情分析
初中阶段,学生学习了简单的一元一次方程和一元二次方程,并会用求根公式求一元二次方程的根;高中阶段,学生学习了基本初等函数(I),对指数函数、对数函数、幂函数的图象和性质都有了比较深入的研究,同时对“数形结合”思想有了较为深入的理解和应用;另外,前一节内容的学习,不仅把函数与方程联系起来,还可以利用零点的存在性定理判断零点是否存在。这些都为本节课的学习奠定了基础.
同时对已经学过此内容的高二、高三学生的调研发现,学生对于“精确度”的概念非常模糊,这也对我们的教学提供了参考. 二、教学目标设计
基于以上分析,根据本节课的教学内容、课程标准的要求和学生的实际情况,确定本节课的教学目标为:
1.知识与技能
(1)通过具体实例,能够借助图形计算器用二分法求相应方程的近似解(给定精度),体会二分法的思想,了解这种方法是求方程近似解的常用方法; (2)通过具体实例,归纳概括二分法的实施步骤,并用准确的数学语言表述出来;
2.过程与方法
经历借助图形计算器画出具体函数的图像、用二分法求函数零点的近似值、总结二分法实施步骤的过程,体会其中所蕴含的函数与方程思想、数形结合思想、逼近思想以及从具体到一般的研究方法等; 3.情感态度与价值观
引导学生用联系的观点理解有关内容,沟通函数、方程、不等式以及算法等内容,使学生体会知识之间的联系;发展学生的理性思维.
【教学重点】理解二分法的基本思想、会用二分法求方程的近似解.
【教学难点】精确度的概念、归纳概括二分法的实施步骤并用准确的数学语言表述.
三、教学策略分析
为了更好地突出重点,我在引入环节通过具体实例以及介绍历史上方程求解的发展脉络引入课题——求方程的近似解,首先解决了“研究什么”、“为什么研究”的问题.至于“如何研究”则通过具体实例lnx?2x?6?0阐释.在这个过程中借助图形计算器充分体现数形结合思想,并将数形结合思想具体化落实:1.从数到形:方程的解——函数的零点——函数图象与x轴的交点;2.从形到数:交点的坐标——数轴上的区间——表格数据——二分法的形成.
为了突破难点,在具体实例的解决中采用问题串的形式引导、激发学生的探究热情:“如何将零点所在区间缩小”、“如何停止”等,由此引出 “精确度”的概念.为了突破此难点,首先在引入中用“误差”做铺垫,同时利用数轴进行直观解释.而从具体实例中的二分法上升到归纳概括一般步骤对于学生是困难的,在教学中首先在解决具体问题中引导学生思考“第一步做什么,第二步做什么……”,然后引导学生用文字语言表述并尝试用数学符号语言表述,同时利用数轴的直观来突破符号语言中“赋值”这一难点.
本节课的核心内容是“用二分法求方程的近似解,体会二分法思想”,为了不冲淡本节课的主题,在教学中设计应用TI图形计算器:作图功能、表格功能(计算函数值)、求解功能.图形计算器的使用,可以帮助我们实现“数形结合”的具体化落实,对知识的发展起到了助力作用. 三、教学过程的设计与实施 (一)具体实例,引出课题
【问题1】2018年5月15日北大珠峰登山队成功登顶世界第一高峰珠穆朗玛峰,以此庆贺北大建校120周年.我们知道,随着海拔的升高,大气压强会降低,空气中的含氧量会降低,影响人的身体.
(1)登山队员为了实时监测身处地的大气压强,从某公司购买了先进的气压表,在其产品参数中有这样一句话:经订正后测量误差不大于200Pa,你如何理解这句话? (2)已知大气压强y(单位Pa)与海拔x(单位m)间
5.25885?ln?288.15?0.0065x??18.2573的关系式为:y?e.2018年5月13
日登山队计划前往海拔7790米的营地,但是某队员身体不适,当压强降低为海拔的5.5倍时他就必须停止攀登,此时他能否到达该营地呢?
【设计意图】从一个实际问题引入,首先让学生体会现实生活中存在大量取近
2m2的正方形地面砖等,另一方面似值问题,如生产零食袋上标注的净含量、(1)
中的“误差”也为要学习的“精确度”概念做铺垫.对于(2)可以从两个角度将实际问题转化为数学问题:一是求方程e5.25885?ln?288.15?0.0065x??18.2573?5.5x的解,与7790比较;二是将7790代入关系式求出压强,利用压强与海拔的比值进行判断.本节课我们抓住角度一,让学生产认知冲突,激发学生的求知欲望并体会求近似解的必要性,同时引入方程求解的历史,让学生感受数学文化方面的熏陶.这样我们就解决了“研究什么”、“为什么研究”的问题. (二)问题引领,探究方法
【问题2】如何求方程lnx?2x?6?0的近似解?
【设计意图】由于问题1中方程较为复杂,为了计算方便研究此方程.引导学生