内容发布更新时间 : 2025/2/9 6:58:30星期一 下面是文章的全部内容请认真阅读。
专题限时集训(五) 数列的通项与求和
[建议A、B组各用时:45分钟]
[A组 高考达标]
一、选择题
1.(2016·济南模拟)已知数列{an}的前n项和为Sn,若Sn=2an-4(n∈N*),则an=( )
A.2n+1 C.2n1
-
B.2n D.2n2
-
A [由Sn=2an-4可得Sn-1=2an-1-4(n≥2),两式相减可得an=2an-2an-
1(n≥2),即
an=2an-1(n≥2).又a1=2a1-4,a1=4,所以数列{an}是以4为首项,
2为公比的等比数列,则an=4×2n-1=2n+1,故选A.]
n-1
2.数列{an}满足a1=1,且当n≥2时,an=nan-1,则a5=( ) 1A.5 C.5
1B.6 D.6
n-1ann-1
A [因为a1=1,且当n≥2时,an=nan-1,则=n,所以a5=
an-1a5a4a3a243211····a,即a=××××1=5a4a3a2a1154325.故选A.]
3.
1111
+2+2+…+的值为( ) 2-13-14-1?n+1?2-1
2n+1A. 2?n+2?
1?31?1+C.4-2?n+1n+2? ??
n+13
B.4-
2?n+2?311D.2-+
n+1n+2
111
C [∵=2= 2?n+1?-1n+2nn?n+2?1?1?1-=2?nn+2?, ??∴
122-1
+
132-1
+
142-1
+
…
+
1
?n+1?2-1
=
12
1111111??
?1-3+2-4+3-5+…+n-n+2? ??
11?1?3
--?=22n+1n+2? ??1?31?1
+=4-2?n+1n+2?.] ??
S2 012S104.在等差数列{an}中,a1=-2 012,其前n项和为Sn,若2 012-10=2 002,则S2 014的值等于( )
A.2 011 C.2 014
C [等差数列中,Sn=na1+
B.-2 012 D.-2 013
?Sn?n?n-1?Snd
??是首项d,=a+(n-1),即数列1
2n2?n?
dS2 012S10d
为a1=-2 012,公差为2的等差数列.因为2 012-10=2 002,所以(2 012-10)2d
=2 002,2=1,所以S2 014
=2 014[(-2 012)+(2 014-1)×1] =2 014,选C.]
15.数列{an}满足a1=1,且对任意的m,n∈N*都有am+n=am+an+mn,则a111+a+a+…+a等于( ) 232 014
4 028A.2 015 4 018C.2 012
4 024B.2 013 2 010D.2 011
1
A [令m=1,得an+1=an+n+1,即an+1-an=n+1,于是a2-a1=2,a3-a2=3,…,an-an-1=n,上述n-1个式子相加得an-a1=2+3+…+n,
所以an=1+2+3+…+n=1因此a=n1
n?n+1?2,
1?2?1
=2?n-n+1?,
n?n+1???
2
3
2 014
1111
所以a+a+a+…+a 11111??
=2?1-2+2-3+…+2 014-2 015?
??1?4 028?
=2?1-2 015?=2 015.故选A.]
??二、填空题
6.(2016·西安模拟)设Sn是数列{an}的前n项和,an=4Sn-3,则S4=__________. 【导学号:67722025】
20
27 [∵an=4Sn-3,∴当n=1时,a1=4a1-3,解得a1=1,当n≥2时,an1
∵4Sn=an+3,∴4Sn-1=an-1+3,∴4an=an-an-1,∴=-3,∴{an}是以1
an-1?1?1-?-3?4
??803201
为首项,-3为公比的等比数列,∴S4=
1=81×4=27.] 1+3
7.(2016·广州二模)设数列{an}的前n项和为Sn,若a2=12,Sn=kn2-1(n∈N
*
?1?
),则数列?S?的前
?n?
n项和为__________.
n
[令n=1得a1=S1=k-1,令n=2得S2=4k-1=a1+a2=k-1+12,2n+1
1
解得k=4,所以Sn=4n2-1,S=n
1?111?1
-??,==
4n2-1?2n+1??2n-1?2?2n-12n+1?
?1?1?1?1?1?1?11?1?1?1
则数列?S?的前n项和为2?1-3?+2?3-5?+…+2?2n-1-2n+1?=2?1-2n+1?
?????n?????
n
=.] 2n+1
8.已知数列{an}的前n项和Sn满足Sn=2an+1(n∈N*),且a1=1,则通项公式an=________.
1,n=1,??
?1?3?n-2n∈N* [由Sn=2an+1(n∈N*)可得Sn-1=2an(n≥2,n∈??,n≥2,·??2?2?N*)两式相减得:
an+13
an=2an+1-2an,即a=2(n≥2,n∈N*).
n1
又由a1=1及Sn=2an+1(n∈N*)可得a2=2,