内容发布更新时间 : 2024/12/22 19:23:27星期一 下面是文章的全部内容请认真阅读。
p2?1, ∴y?220代入上式得
p2?12y21x22?????y?1, 22x?2p?222由①与y0?0,得y?0, ①÷②,得x?2p?2????1?x?0.
x?2p?2x2?y2?1?x?0,y?0?. 故点Q的轨迹方程为2(2)设点A?m,n??m?0,n?0?,过点A作椭圆的切线, 则切线的斜率存在且不为0,设斜率为k,
则切线方程为y?n?k?x?m??y?kx?n?km, 代入到椭圆方程整理, 得1?2k?2?x2?4k?n?km?x?2?n?km??2?0.
222??16k2?n?km??41?2k2?2?n?km??2??0,
??222即m?2k?2mnk?n?1?0.
????这个关于k的一元二次方程的两根即为kAB与kAD, 由kAB?kAD??1,
n2?1??1?m2?n2?3. 得2m?2设O为坐标原点,故可知OA?3, 同理,得OA?OB?OC?OD?3,
即点O为矩形ABCD外接圆的圆心,其中AC为直径,大小为23, 故矩形ABCD对角线长为定值23. 21.解:(1)由题意,得f??x??1?a?x. ex当1?a??1,即a?2时,f??x??0?f?x?在x???1,1?时为单调递减函数, 所以f?x?最大值为g?a??f??1??e?a?1?.
当?1?1?a?1,即0?a?2时,当x???1,1?a?时,f??x??0,f?x?单调递增; 当x??1?a,1?时,f??x??0,f?x?单调递减, 所以f?x?的最大值为g?a??f?1?a??ea?1.
当1?a?1时,即a?0时,f??x??0,f?x?在x???1,1?时为单调递增函数, 所以f?x?的最大值为g?a??f?1??1?a. e??e?a?1?,a?2,?a?1综上得g?a???e,0?a?2,
?1?a?,a?0.?e(2)令h?a??g?a??ka?t.
①当0?a?2时,h?a??g?a??ka?t?e由h??a??0,得a?1?lnk, 所以当a??0,1?lnk?时,h??a??0; 当a??1?lnk,2?时,h??a??0,
故h?a?最小值为h?1?lnk??k?k?1?lnk??t?0?t??klnk. 故当
a?1?ka?t?h??a??ea?1?k,
1?k?e且t??klnk时,g?a??ka?t恒成立. e②当a?2,且t??klnk时,h?a??g?a???ka?t??a?e?k??e?t. 因为e?k?0, 所以h?a?单调递增,
故h?a?min?h?2??2?e?k??e?t?2?e?k??e?klnk?e?2k?klnk.
令p?k??e?2k?klnk, 则p??k??lnk?1?0,
故当k??,e?时,p?k?为减函数, 所以p?k??p?e?, 又p?e??0, 所以当
?1?e??1?k?e时,h?a??0, e即h?a??0恒成立.
③当a?0,且t??klnk时,
?1?1h?a??g?a???ka?t??a??k???t,
?e?e因为
1?k?0, e所以h?a?单调递减, 故h?a?min?h?0??令m?k??11?t??klnk. ee1?klnk, e则m??k??1?lnk?0,
所以当k??,e?时,p?k?为增函数,
?1?e??所以m?k??m???0, 所以h?a??0,即h?a??0. 综上可得当
?1??e?1?k?e时,“t??klnk”是“g?a??ka?t成立”的充要条件. e2此时tk??klnk.
令q?k???klnk,
2则q??k???2klnk?k??k?2lnk?1?, 令q??k??0,得k?e?12.
??1?1?故当k??e,e2?时,q??k??0;
????1?当k??e2,e?时,q??k??0,
????1?1所以q?k?的最大值为q?e2??,
??2e1?1当且仅当k?e,t??klnk?e2时,取等号,
2?12故tk的最大值为
1. 2e22.解:(1)??4cos??6sin???2?4?cos??6?sin?
?x2?y2?4x?6y
??x?2???y?3??13.
圆心为?2,3?,半径为13. (2)把直线l的参数方程代入圆M的标准方程, 得?1?tcos??2???2?tsin??3??13, 整理得t??2cos??2sin??t?11?0,
22222???2cos??2sin???44?0,
设A,B两点对应的参数分别为t1,t2, 则t1?t2?2sin??2cos?,t1t2??11. 所以AB?t1?t2?2?t1?t2?22?4t1t2 ??2cos??2sin???4???11? ?4sin2??48. 因为sin2????1,1?, 所以AB??211,213?,
??即AB的最大值为213,最小值为211. 23.解:(1)对?x?R,f?x??x?x?a?x??x?a??a, 当且仅当x?x?a??0时取等号, 故原条件等价于a?2a?1,
即a?2a?1或a???2a?1??a?1, 故实数a的取值范围是???,1?.
(2)由2a?1?x?x?a?0,可知2a?1?0, 所以a?1, 2故?a?0.
??2x?a,x??a,?故f?x???a,?a?x?0,的图象如图所示,
?2x?a,x?0?
?a?2,???2b?a?2a?1,????5.
2b?3?a?2a?1b??.??????2