半导体激光器温度控制电路设计 下载本文

内容发布更新时间 : 2024/9/19 22:06:01星期一 下面是文章的全部内容请认真阅读。

龙源期刊网 http://www.qikan.com.cn

半导体激光器温度控制电路设计

作者:霍佳皓 李洪祚

来源:《现代电子技术》2013年第20期

摘 要: 在对激光器的温度控制理论作了深入研究的基础上,为了使激光器工作时温度恒定,设计了一种新型的温度控制电路,电路中采用了ADN8831作为的核心器件,结合PWM控制方案,完成了包括输入级、补偿环节、输出级、滤波电路和保护及检测电路的硬件电路设计。经过实际连接激光器实验,温度控制精度可达0.01 ℃。电路具有体积小、效率高、可靠性高、驱动能力强等特点,可以为激光器提供恒定的温度控制。 关键词: 温度控制; 半导体激光器; TEC; PID

中图分类号: TN722?34 文献标识码: A 文章编号: 1004?373X(2013)20?0153?03 0 引 言

通过对半导体激光器特性的研究,可知温度对激光器的正常工作有着重要的影响。温度会直接影响到半导体激光器的工作参数包括[1]:阈值电流、V?I关系、输出波长、P?I关系等。同时高温也会对激光器产生极大的影响,严重影响其使用寿命和效率。本文采用ADN8831温度控制芯片[3]为激光器提供恒定且可调的工作温度来保证激光器高效率工作。 1 温度控制芯片介绍

根据半导体激光器对温度的要求,选定ADN8831作为激光器的温度控制主芯片。ADN8831芯片是目前最优秀的单芯片高集成度、高输出效率和高性能的TEC驱动模块之一。ADN8831的最大温漂电压低于250 mV,能够使设定温度误差控制在±0.01 ℃左右。在工作过程中,ADN8831输入端的电压值对应一个设定好的目标温度。适当大小的电流流过TEC,使TEC加热或制冷,在这个过程中使激光器表面温度向设定温度值靠近[2]。此芯片还有过流保护功能,可编程开关频率最高可达1 MHz。 2 TEC控制原理

TEC(Thermo Electric Cooler)实际上是用两种材料不同半导体(P型和N型)组成PN结,当PN结中有直流电流通过时,由于两种材料中的电子和空穴在跨越PN结移动过程中产生吸热或放热效应(帕尔帖效应[4]),就会使PN结表现出制冷或制热的效果,改变电流方向即可实现TEC加热或制冷,调节电流大小即可控制加热或制冷量的输出[5]。利用TEC稳定激光器温度方法的系统框图[6]如图1所示。

图1中贴着激光器右侧的是温度传感器,这里使用具有负温度系数的热敏电阻。这个热敏电阻是用来测量安放在TEC表面上的激光器的温度。期望的激光器温度用一个固定的电压值

龙源期刊网 http://www.qikan.com.cn

来表示,与热敏电阻产生的电压值通过高精度运算放大器进行比较,比较后产生的误差电压通过高增益的放大器放大,同时补偿网络对因为激光器的冷热端引起的相位延迟进行补偿,补偿后驱动H桥输出,H桥不仅控制TEC电流的大小还能控制TEC电流的方向。当激光器的温度值低于设定点温度值时,H桥会朝TEC一个方向按一定的幅值驱动电流,此时TEC处于加热状态;当激光器的温度值高于设定点温度值时,H桥会减少TEC的电流大小甚至会改变TEC的电流方向,这时TEC就处于制冷状态。当控制环路达到平衡时,TEC的电流的大小和方向就调整好了,激光器温度就会慢慢的向设定好温度靠近。 3 温控电路设计 3.1 输入部分设计 3.2 补偿电路设计

PID(Proportion Integrator Differentiator)比例积分微分调节补偿网络是TEC温控电路中最关键的部分,它决定了TEC控制器的响应速度和温度稳定性。PID相当于放大倍数可调的放大器,用比例运算和积分运算来提高调节精度,用微分运算加速过渡过程,较好地解决了调节速度与精度的矛盾。PID的数学模型可用式(4)表示:

式中:KP为比例系数;TI为积分时间常数;TD为微分时间常数。

在进行修正时,一般采用调节补偿电路参数的方法来使TEC控制系统的响应时间和精度变得更优[9]。在电路设计时,把前级误差运放的输出连接到温度补偿电路的输入管脚上,这样就完成了温度补偿电路的设计,具体电路连接图如图4所示。

由于本文中测温目标为激光器,根据设计要求和计算,系统的参数通常这样选取[10]:R5=100 kΩ,RH=1 MΩ,RF=200 kΩ,C1=1 μF,C2=10 μF和一个330 pF的反馈电容。 3.3 输出部分设计

ADN8831是一个差分输出方式的TEC控制器。搭建一个外围H桥电路产生适当的电流来驱动TEC,使其对半导体激光器加热或制冷。如图5所示。

图中的P1,P2,N1,N2,OUTA,OUTB分别连到ADN8831的P1,P2,N1,N2,OUTA,OUTB引脚上。TEC控制器设在H桥中间,构成一个不对称桥。ADN8831对H桥的左支采用开关方式驱动,右支采用线性方式驱动,即当开关管N1导通、开关管P1关闭、P2常通、N2常闭时,电流从TEC的OUTB端经TEC流向OUTA端,此为制冷状态;当开关管N1关闭、开关管P1导通、P2常闭、N2常通时,电流从TEC的OUTA端经TEC流向OUTB端,此为致热状态。这种灵活又方便的外接H桥,能更好的提高电源效率,减小纹波电流,增加了散热路径。

龙源期刊网 http://www.qikan.com.cn

用非对称H桥驱动TEC,其中器件的选择要考虑两个因素: (1)TEC工作的最大电流是多少;

(2)导通电阻最小可以是多少(考虑功率耗散问题)。

本文采用的是FAIRCHILD SEMICONDUCTOR公司的FDW2520C芯片。该芯片由一对PMOS和NMOS管构成,其中PMOS管能够提供的最大电流为4.4 A,导通电阻为35 mΩ;NMOS管能够提供的最大电流为6 A,导通电阻[2]为18 mΩ。 3.4 滤波电路

为了使ADN8831有效地驱动TEC,其电压必须稳定,上述的外围H桥电路产生的是0~VCC的脉冲宽度调制方波。所以,这时候就需要设计一个滤波电路来实现驱动的目的。设计采用R?L?C低通滤波网络,其等效电路如图6所示。

图6中,RL表示TEC电阻,R1是C1的等效串联电阻,R2等于L1的寄生电阻加上Q1或Q2的导通电阻,并且R1和R2要远远小于RL,VX是在PVDD和PGND之间变化的脉冲宽度调制电压,这个电路构成了一个二阶的低通滤波网络[12]。 4 保护与检测电路

ADN8831内部提供了相关保护电路,这样起到保护TEC防止激光器因过热而损坏。因为有时候通过TEC的电流有可能大于额定工作电压,这样会烧坏TEC和半导体激光器,造成经济上的损失。图7为保护与检测电路。 5 结 语

通过实验及分析得到,温度控制偏差为±0.01 ℃。系统的恒温控制精度取决于温度采样值与温度设定值的特性,传感器本身的精度较高,其灵敏度取决于其本身特性。若是想得到高稳定性的电压设定值,则需要使用高稳定性、高精度、低温漂的稳压源。此外,系统电路也要使用低温漂、高稳定性的器件。 参考文献

[1] 周杰.半导体激光器特性参数测试系统的设计与实现[D].武汉:武汉理工学,2010. [2] 齐兰.LC25W_A半导体激光器调制电路研究和实现[D].长春:长春理工大学,2011. [3] 郑兴,蒋亚东,罗凤武,等.基于ADN8830的非制冷红外焦平面温度控制电路设计[J].现代电子技术,2009,32(24):154?156.