实验三 图像分割与边缘检测 下载本文

内容发布更新时间 : 2024/12/25 12:15:34星期一 下面是文章的全部内容请认真阅读。

数字图像处理实验报告

学生姓名

王真颖

学生学号

L0902150101

指导教师

梁毅雄

专业班级 计算机科学与技术1501

完成日期 2017年11月06日

计算机科学与技术系 信息科学与工程学院

目 录

实验一 ............................................................................................................ 错误!未定义书签。 一、实验目的 ............................................................................................. 错误!未定义书签。 二、实验基本原理 ..................................................................................... 错误!未定义书签。 三、实验内容与要求 ................................................................................. 错误!未定义书签。 四、实验结果与分析 ................................................................................. 错误!未定义书签。 实验总结 ........................................................................................................ 错误!未定义书签。 参考资料 .......................................................................................................................................... 3

实验一 图像分割与边缘检测

一.实验目的

1. 理解图像分割的基本概念; 2. 理解图像边缘提取的基本概念; 3. 掌握进行边缘提取的基本方法;

4. 掌握用阈值法进行图像分割的基本方法。

二.实验基本原理

●图象边缘检测

图像理解是图像处理的一个重要分支,研究为完成某一任务需要从图像中提取哪些有用的信息,以及如何利用这些信息解释图像。边缘检测技术对于处理数字图像非常重要,因为边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。在图像中,边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特征或属性是一致的,而不同的区域内部的特征或属性是不同的,边缘检测正是利用物体和背景在某种图像特性上的差异来实现的,这些差异包括灰度,颜色或者纹理特征。边缘检测实际上就是检测图像特征发生变化的位置。图象边缘检测必须满足两个条件:一能有效地抑制噪声;二必须尽量精确确定边缘的位置

由于噪声和模糊的存在,检测到的边界可能会变宽或在某些点处发生间断,因此,边界检测包括两个基本内容:首先抽取出反映灰度变化的边缘点,然后剔除某些边界点或填补边界间断点,并将这些边缘连接成完整的线。边缘检测的方法大多数是基于方向导数掩模求卷

积的方法。

导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值比较高,因此可将这些导数值作为相应点的边界强度,通过设置门限的方法,提取边界点集。

一阶导数与是最简单的导数算子,它们分别求出了灰度在x和y方向上的变化率,而方向α上的灰度变化率可以用相应公式进行计算;对于数字图像,应该采用差分运算代替求导。

一幅数字图像的一阶导数是基于各种二维梯度的近似值。图像f(x,y)在位置(x,y)的梯度定义为下列向量:

??f???x?G[f(x,y)]???f? (3-4)

?????y??在边缘检测中,一般用这个向量的大小,用?f表示

?f?[Gx2?Gy2]1/2 (3-5)

函数f在某点的方向导数取得最大值的方向是,方向导数的最大值是称为梯度模。利用梯度模算子来检测边缘是一种很好的方法,它不仅具有位移不变性,还具有各向同性。为了运算简便,实际中采用梯度模的近似形式。

?f?|Gx|?|Gy| 或者 ?f?max(G|x|,G|y

传统的边缘检测算法通过梯度算子来实现的,在求边缘的梯度时,需要对每个象素位置计算。在实际中常用小区域模板卷积来近似快速计算,简单有效,即梯度算子一般采用滤波算子的形式来完成,因此应用很广泛。模板是N*N的权值方阵,经典的梯度算子模板有:Sobel模板、Prewitt模板、Roberts模板、Laplacian模板等。具体模板请见书。

拉普拉斯高斯(LoG)算法是一种二阶边缘检测方法。它通过寻找图像灰度值中二阶微分中的过零点(Zero Crossing)来检测边缘点。其原理为,灰度级变形成的边缘经过微风算子形成一个单峰函数,峰值位置对应边缘点;对单峰函数进行微分,则峰值处的微分值为0,峰值两侧符号相反,而原先的极值点对应二阶微分中的过零点,通过检测过零点即可将图像的边缘提取出来。

(a)原图 (b)边缘检测后的图 (c) 阈值处理后的图

图3-1 检测具有-45度边缘的图例