新北师大版八年级下册数学教案 下载本文

内容发布更新时间 : 2025/1/13 21:23:11星期一 下面是文章的全部内容请认真阅读。

第一章 三角形的证明 1.等腰三角形(一)

一、教学目标如:

1.知识目标:理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理;熟悉证明的基本步骤和书写格式。

2.能力目标:经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力;

3.情感与价值目标:启发引导学生体会探索结论和证明结论,及合情推理与演绎的相互依赖和相互补充的辩证关系; 二.教学重、难点

重点:探索证明等腰三角形性质定理的思路与方法,掌握证明的基本要求和方法; 难点:明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。 三、教学过程分析

第一环节:回顾旧知 导出公理

请学生回忆并整理已经学过的8条基本事实。其中证明三角形全等的有以下三条: 两边夹角对应相等的两个三角形全等(SAS); 两角及其夹边对应相等的两个三角形全等(ASA); 三边对应相等的两个三角形全等(SSS);

在此基础上回忆全等三角形的另一判别条件:1.(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理进行证明;

2.回忆全等三角形的性质。

已知:如图,∠A=∠D,∠B=∠E,BC=EF. 求证:△ABC≌△DEF.

证明:∵∠A=∠D,∠B=∠E(已知),

BCEFAD又∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°), ∴∠C=180°-(∠A+∠B), ∠F=180°-(∠D+∠E), ∴∠C=∠F(等量代换)。

又BC=EF(已知),∴△ABC≌△DEF(ASA)。 第二环节:折纸活动 探索新知

提问:“等腰三角形有哪些性质?如何探索这些性质的,你能再次通过折纸活动验证这些性质吗?并根据

1

折纸过程,得到这些性质的证明吗?” 第三环节:明晰结论和证明过程

让学生明晰证明过程。

(1)等腰三角形的两个底角相等;

(2)等腰三角形顶角的平分线、底边中线、底边上高三条线重合 第四环节:随堂练习 巩固新知 第五环节:课堂小结 第六环节:布置作业 四、教学反思

1. 等腰三角形(二)

一、教学目标:

1.知识目标:探索——发现——猜想——证明等腰三角形中相等的线段,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性;

2.能力目标:①经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力;

②在命题的变式中,发展学生提出问题的能力,拓展命题的能力,从而提高学生的学习能力和思维能力,提高学生学习的主体性;

③在图形的观察中,揭示等腰三角形的本质:对称性,发展学生的几何直觉; 3.情感与价值观要求①鼓励学生积极参与数学活动,激发学生的好奇心和求知欲. ②体验数学活动中的探索与创造,感受数学的严谨性. 二.教学重、难点

重点:经历“探索——发现一一猜想——证明”的过程,能够用综合法证明有关三角形和等腰三角形的一些结论. 三、教学过程分析

第一环节:提出问题,引入新课

在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发现其中一些相等的线段吗?你能证明你的结论吗?

例1证明:等腰三角形两底角的平分线相等

2

已知:如图,在△ABC中,AB=AC,BD、CE是△ABC的角平分线. 求证:BD=CE. 证明:∵AB=AC,

∴∠ABC=∠ACB(等边对等角). 11

∵∠1= ∠ABC,∠2= ∠ABC,

22∴∠1=∠2.

在△BDC和△CEB中,

∠ACB=∠ABC,BC=CB,∠1=∠2. ∴△BDC≌△CEB(ASA).

∴BD=CE(全等三角形的对应边相等) 第三环节:经典例题 变式练习

活动内容:提请学生思考,除了角平分线、中线、高等特殊的线段外,还可以有哪些线段相等?并在学生思考的基础上,研究课本“议一议”:

在课本图1—4的等腰三角形ABC中,

11

(1)如果∠ABD= ∠ABC,∠ACE= ∠ACB呢?由此,你能得到一个什么结论?

34

1111

(2)如果AD= AC,AE= AB,那么BD=CE吗?如果AD= AC,AE= AB呢?由此你得到什么结论?

2233

第四环节:拓展延伸,探索等边三角形性质

活动内容:提请学生在上面等要三角形性质定理的基础上,思考等边三角形的特殊性质:等边三角形三个内角都相等并且每个内角都等于60°.

已知:ΔABC中,AB=BC=AC. 求证:∠A=∠B=∠C=60°.

证明:在ΔABC中,∵AB=AC,∴∠B=∠C(等边对等角). 同理:∠C=∠A,∴∠A=∠B=∠C(等量代换).

又∵∠A+∠B+∠C=180°(三角形内角和定理),∴∠A=∠B=∠C=60°. 第五环节: 随堂练习 及时巩固 第六环节:探讨收获 课时小结 课外作业 四、教学反思

3

AE3BD421C